【題目】兩城市和相距,現(xiàn)計劃在兩城市外以為直徑的半圓上選擇一點建造垃圾處理場,其對城市的影響度與所選地點到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點到城的距離為,建在處的垃圾處理場對城和城的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理場對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為4,對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場建在的中點時,對城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點,使建在此處的垃圾處理場對城和城的總影響度最小?若存在,求出該點到城的距離;若不存在,說明理由;
【答案】(1);
(2)存在,該點到城市A的距離時,總影響度最;
【解析】
(1)根據(jù)“垃圾處理場對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為4,對城的影響度與所選地點到城的距離的平方成反比,比例系數(shù)為”,建立函數(shù)模型:,再根據(jù)當(dāng)時,,求得即可.
(2)總影響度最小,即為:求的最小值時的狀態(tài),令,將函數(shù)轉(zhuǎn)化為:,再用基本不等式求解.
(1)由題意得,
又當(dāng)時,,
,.
(2),
令,則,
當(dāng)且僅當(dāng),即時,等號成立,
弧上存在一點,使建在此處的垃圾處理場對城和城的總影響度最小.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻率分布直方圖:
(1)求這100件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組的數(shù)據(jù)用該組區(qū)間的中點值作為代表);
(2)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差。
(i)若某用戶從該企業(yè)購買了10件這種產(chǎn)品,記表示這10件產(chǎn)品中質(zhì)量指標(biāo)值位于(187.4,225.2)的產(chǎn)品件數(shù),求;
(ii)一天內(nèi)抽取的產(chǎn)品中,若出現(xiàn)了質(zhì)量指標(biāo)值在之外的產(chǎn)品,就認為這一天的生產(chǎn)過程中可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查下。下面的莖葉圖是檢驗員在一天內(nèi)抽取的15個產(chǎn)品的質(zhì)量指標(biāo)值,根據(jù)近似值判斷是否需要對當(dāng)天的生產(chǎn)過程進行檢查。
附:,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到八個分數(shù)區(qū)間,得到考生的等級成績.
某校級學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級的學(xué)生原始成績統(tǒng)計如下
成績 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)求物理獲得等級的學(xué)生等級成績的平均分(四舍五入取整數(shù));
(2)從物理原始成績不小于分的學(xué)生中任取名同學(xué),求名同學(xué)等級成績不相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從年高考開始,高考物理、化學(xué)等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則分別轉(zhuǎn)換到八個分數(shù)區(qū)間,得到考生的等級成績.
某校級學(xué)生共人,以期末考試成績?yōu)樵汲煽冝D(zhuǎn)換了本校的等級成績,為學(xué)生合理選科提供依據(jù),其中物理成績獲得等級的學(xué)生原始成績統(tǒng)計如下
成績 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)從物理成績獲得等級的學(xué)生中任取名,求恰好有名同學(xué)的等級分數(shù)不小于的概率;
(2)待到本級學(xué)生高考結(jié)束后,從全省考生中不放回的隨機抽取學(xué)生,直到抽到名同學(xué)的物理高考成績等級為或結(jié)束(最多抽取人),設(shè)抽取的學(xué)生個數(shù)為,求隨機變量的數(shù)學(xué)期望(注: ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,因而也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個圖形是一個圓形,其中黑色陰影區(qū)域在軸右側(cè)部分的邊界為一個半圓.給出以下命題:①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是;②當(dāng)時,直線與黑色陰影部分有公共點;③當(dāng)時,直線與黑色陰影部分有兩個公共點.其中所有正確結(jié)論的序號是( )
A.①B.①②C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||<)的部分圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若對于任意的x∈[0,m],f(x)≥1恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,底面是正三角形,側(cè)棱底面.D,E分別是邊BC,AC的中點,線段與交于點G,且,.
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com