【題目】在直角坐標系中,橢圓關于坐標軸對稱,以坐標原點為極點,以軸的正半軸為極軸建立極坐標系, 為橢圓上兩點.

(1)求直線的直角坐標方程與橢圓的參數(shù)方程;

(2)若點在橢圓上,且點在第一象限內(nèi),求四邊形面積的最大值.

【答案】(1)直角方程參數(shù)方程為(2)6.

【解析】試題分析

1)將點A的坐標化為直角坐標便可得到直線的傾斜角,進而可得直線的方程;然后根據(jù)待定系數(shù)法可得橢圓的直角坐標方程,再化為參數(shù)方程即可.(2)由1可得點M(2cosα,2sinα) ,0α,進而可得點M到直線OA的距離d,所以SSMOASMOB

6sin(α)結(jié)合三角知識可得結(jié)果

試題解析:

1A(,)得直線OA的傾斜角為,

所以直線OA斜率為tan=-1

故直線OA的方程為xy0

xρcosα,yρsinα可得點A的直角坐標為(, ),

因為橢圓C關于坐標軸對稱,且B(20),

所以可設橢圓C1,其中t0t≠12,

( )的坐標代入曲線C的方程,可得t4

故橢圓C的方程為,

所以橢圓C的參數(shù)方程為

21M(2cosα,2sinα)0α

M到直線OA的距離dcosαsinα

所以SSMOASMOB(3cosαsinα)2sinα3cosα3sinα6sin(α),

故當α時,四邊形OAMB面積S取得最大值6

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角、所對的邊分別是、、,不等式對一切實數(shù)恒成立.

1)求的取值范圍;

2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的個數(shù)是(

①從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調(diào)查社會購買力的某一項指標,應采用的最佳抽樣方法是分層抽樣

②線性回歸直線一定過樣本中心點

③對于一組數(shù)據(jù),如果將它們改變?yōu)?/span>,則平均數(shù)與方差均發(fā)生變化

④若一組數(shù)據(jù)1、、23的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2

⑤用系統(tǒng)抽樣方法從編號為1,2,3,…,700的學生中抽樣50人,若第2段中編號為20的學生被抽中,按照等間隔抽取的方法,則第5段中被抽中的學生編號為76

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的不恒為零的函數(shù),對于任意實數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.

以上結(jié)論正確的是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點.

(1)證明:EF平面PAB;

(2)若二面角P-AD-B為60°

證明:平面PBC平面ABCD;

求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足如下條件:

①函數(shù)的最小值為,最大值為9;

;

③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2

試探究并解決如下問題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數(shù)的圖象的對稱軸方程;

(Ⅲ)設是函數(shù)的零點,求的值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知向量,,函數(shù),若的圖象上相鄰兩條對稱軸的距離為且圖象過點.

(1)求表達式和的單調(diào)增區(qū)間;

(2)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),得到函數(shù)的圖象,若函數(shù)在區(qū)間上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓軸于點,交軸于點.以為頂點,分別為左、右焦點的橢圓,恰好經(jīng)過點.

(1)求橢圓的標準方程;

(2)設經(jīng)過點的直線與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率.

(1)求的方程;

(2)設直線經(jīng)過點且與相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明: 為定值.

查看答案和解析>>

同步練習冊答案