已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

 

【答案】

(Ⅰ)(Ⅱ)當(dāng)時,即時,在區(qū)間上的最大值為2;當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)見解析

【解析】(Ⅰ)利用函數(shù)過點和切點的坐標(biāo)列式求出參數(shù);(Ⅱ)先求出函數(shù)的導(dǎo)函數(shù),然后利用導(dǎo)數(shù)法求最值的步驟求出最值;(Ⅲ)先設(shè)出坐標(biāo),然后幾何特征列出關(guān)于參數(shù)的函數(shù),然后再利用導(dǎo)函數(shù)判斷方程是否有解

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,!上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時,

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省宜春中學(xué)、新余一中高三(上)12月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點O,且在點(-1,f(-1))處的切線的斜率是-5.
(1)試確定實數(shù)b,c的值,并求f(x)在區(qū)間[-1,2]上的最大值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P、Q,使得△POQ是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省菏澤市高三5月高考沖刺題理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當(dāng)時,,則。

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當(dāng)時,,則

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,。∴上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三12月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知函數(shù)的圖象過坐標(biāo)原點O, 且在點處的切線的斜率是.(1)求實數(shù)的值;  (2)求在區(qū)間上的最大值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三上學(xué)期第二次月考理科數(shù)學(xué)試卷 題型:解答題

已知函數(shù)的圖象過坐標(biāo)原點O,且在點 處的切線的斜率是5.

(1)求實數(shù)的值;

(2)求在區(qū)間上的最大值;

 

查看答案和解析>>

同步練習(xí)冊答案