【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

1)寫出直線的普通方程和曲線的直角坐標方程;

2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設線段的中點為,求的值.

【答案】(1); 的直角坐標方程為;(2).

【解析】試題分析:(1)直線的參數(shù)方程中的參數(shù)為,所以消得到直線的普通方程;根據(jù),極坐標方程兩邊同時乘以,化簡為曲線的普通方程;(2)根據(jù)直線過點,可知直線的傾斜角,代入直線的參數(shù)方程,得到,代入曲線的極坐標方程,轉化為關于的一元二次方程,根據(jù)的幾何意義可知.

試題解析:(1直線的參數(shù)方程為為參數(shù)),

直線的普通方程為....................2

,得,即,

曲線的直角坐標方程為.............................4

2的極坐標為,的直角坐標為...............5

,直線的傾斜角

直線的參數(shù)方程為為參數(shù))...................7

代入,得.....................8

兩點對應的參數(shù)為

為線段的中點,

對應的參數(shù)值為

又點,則.........................10

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:tan(α+ )=﹣ ,( <α<π).
(1)求tanα的值;
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個端點為頂點為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點分別為、,當動點在定直線上運動時,直線分別交橢圓于兩點、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元.該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低0.02元.根據(jù)市場調查,銷售商一次訂購量不會超過500件.
(1)設一次訂購量為x件,服裝的實際出廠單價為P元,寫出函數(shù)P=f(x)的表達式;
(2)當銷售商一次訂購多少件時,該服裝廠獲得的利潤最大,最大利潤是多少元? (服裝廠售出一件服裝的利潤=實際出廠單價﹣成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的極小值為0.

(1)求實數(shù)的值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用數(shù)學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某體育場要建造一個長方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價為a且建造池底的單價是建造池壁的1.5倍,怎樣設計水池的長和寬,才能使總造價最底?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的離心率為,其左焦點到點的距離為.不過原點的直線相交于兩點,且線段被直線平分.

1)求橢圓的方程;

2)求的面積取最大值時直線的方程.

查看答案和解析>>

同步練習冊答案