【題目】在△ABC中,AD、BE、CF分別為邊BC、CA、AB上的高,作以AD為直徑的圓T分別與AC、AB交于點(diǎn)M、N,過點(diǎn)M、N作圓T的切線,交于點(diǎn)P,O為△ABC的外心,延長AO,與BC交于點(diǎn)Q,AD與EF交于點(diǎn)R.證明:PD∥QR

【答案】見解析

【解析】

設(shè)AQ與EF的交點(diǎn)為H,PN、PM與BC分別交于點(diǎn)T、S,聯(lián)結(jié)DE、DF、DH.

注意到,

∠DEF=∠BEF+∠BED

=180°-2∠ABC=∠BTN=∠PTS.

類似地,∠DFE=∠PST

所以,△PTS∽△DEF

且在Rt△DMC、Rt△BND中,分別有

.

從而,.

故∠DHE=∠PDT.

由P、Q、H、R四點(diǎn)共圓得

∠RHD=∠RQD.

因此,∠RQD=∠PDT.

于是,PD∥QR.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動點(diǎn)M在橢圓C上,該橢圓的左頂點(diǎn)A到直線的距離為

求橢圓C的標(biāo)準(zhǔn)方程;

若線段MN平行于y軸,滿足,動點(diǎn)P在直線上,滿足證明:過點(diǎn)N且垂直于OP的直線過橢圓C的右焦點(diǎn)F

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鮮花店根據(jù)以往某品種鮮花的銷售記錄,繪制出日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組區(qū)間的頻率視為概率,且假設(shè)每天的銷售量相互獨(dú)立.

(1)求在未來的連續(xù)4天中,有2天的日銷售量低于100枝且另外2天不低于150枝的概率;

(2)用表示在未來4天里日銷售量不低于100枝的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ab表示兩條直線,,表示三個不重合的平面,給出下列命題:

①若,,則;

②若a,b相交且都在,外,,,,,則;

③若,則;

④若,,且,則

⑤若,,,則.

其中正確命題的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,短軸的一個端點(diǎn)到焦點(diǎn)的距離為.

(1)求橢圓的方程;

(2)斜率為的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)在直線上,求直線軸交點(diǎn)縱坐標(biāo)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,是正方形,,,且,分別為棱、的中點(diǎn).

(1)求證:平面

(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分?jǐn)?shù)區(qū)間,得到考生的等級成績.

某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進(jìn)行測試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績在區(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0).三角形ABM的兩條邊AM,BM所在直線的斜率之積是-

(Ⅰ)求點(diǎn)M的軌跡方程;

(Ⅱ)設(shè)直線AM方程為,直線l方程為x=2,直線AM交l于P,點(diǎn)P,Q關(guān)于x軸對稱,直線MQ與x軸相交于點(diǎn)D.若△APD面積為2,求m的值.

查看答案和解析>>

同步練習(xí)冊答案