【題目】設(shè)函數(shù)

(1)當(dāng)為自然對數(shù)的底數(shù))時,求的最小值;

(2)討論函數(shù)零點(diǎn)的個數(shù).

【答案】(1)2;(2)見解析

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可;

(2)令gx)=0,得到;設(shè),通過討論m的范圍根據(jù)函數(shù)的單調(diào)性結(jié)合函數(shù)的草圖求出函數(shù)的零點(diǎn)個數(shù)即可.

解:(1)當(dāng)me時,,∴

當(dāng)x∈(0,e)時,f′(x)<0,fx)在x∈(0,e)上是減函數(shù);

當(dāng)x∈(e,+∞)時,f′(x)>0,fx)在x∈(e,+∞)上是增函;

∴當(dāng)xe時,fx)取最小值

(2)∵函數(shù),

gx)=0,得;

設(shè),則′(x)=﹣x2+1=﹣(x﹣1)(x+1)

當(dāng)x(0,1)時,′(x)>0,x)在x(0,1)上是增函數(shù);

當(dāng)x(1,+∞)時,′(x)<0,x)在x(1,+∞)上是減函數(shù);

當(dāng)x=1是x)的極值點(diǎn),且是唯一極大值點(diǎn),∴x=1是x)的最大值點(diǎn);

x)的最大值為,又(0)=0結(jié)合yx)的圖象,

可知:當(dāng)時,函數(shù)gx)無零點(diǎn);

當(dāng)時,函數(shù)gx)有且只有一個零點(diǎn);

當(dāng)時,函數(shù)gx)有兩個零點(diǎn);

當(dāng)m≤0時,函數(shù)gx)有且只有一個零點(diǎn);

綜上:當(dāng)時,函數(shù)gx)無零點(diǎn);

當(dāng)m≤0時,函數(shù)gx)有且只有一個零點(diǎn);

當(dāng)時,函數(shù)gx)有且只有兩個零點(diǎn);

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|2≤x≤5},B{x|m1≤x≤2m1}

(1)A∪BA,求實(shí)數(shù)m的取值范圍;

(2)當(dāng)x∈Z時,求A的非空真子集的個數(shù);

(3)當(dāng)x∈R時,若A∩B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且.

1)求的值,并確定的解析式;

2)若,是否存在實(shí)數(shù),使得在區(qū)間上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為打贏打好脫貧攻堅(jiān)戰(zhàn),實(shí)現(xiàn)建檔立卡貧困人員穩(wěn)定增收,某地區(qū)把特色養(yǎng)殖確定為脫貧特色主導(dǎo)產(chǎn)業(yè),助力鄉(xiāng)村振興.現(xiàn)計(jì)劃建造一個室內(nèi)面積為平方米的矩形溫室大棚,并在溫室大棚內(nèi)建兩個大小、形狀完全相同的矩形養(yǎng)殖池,其中沿溫室大棚前、后、左、右內(nèi)墻各保留米寬的通道,兩養(yǎng)殖池之間保留2米寬的通道.設(shè)溫室的一邊長度為米,如圖所示.

1)將兩個養(yǎng)殖池的總面積表示為的函數(shù),并寫出定義域;

2)當(dāng)溫室的邊長取何值時,總面積最大?最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點(diǎn)M為棱AB的中點(diǎn),AB=2,AD=,BAD=90°

求證:ADBC;

求異面直線BCMD所成角的余弦值;

(Ⅲ)求直線CD與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【安徽省滁州市2018屆高三上學(xué)期期末考試數(shù)學(xué)】隨著霧霾的日益嚴(yán)重,中國部分省份已經(jīng)實(shí)施了煤改氣的計(jì)劃來改善空氣質(zhì)量指數(shù).2017年支撐我國天然氣市場消費(fèi)增長的主要資源是國產(chǎn)常規(guī)氣和進(jìn)口天然氣,資源每年的增量不足以支撐天然氣市場連續(xù)億立方米的年增量.進(jìn)口LNG和進(jìn)口管道氣受到接收站、管道能力和進(jìn)口氣價資源的制約.未來,國產(chǎn)常規(guī)氣產(chǎn)能釋放的紅利將會逐步減弱,產(chǎn)量增量將維持在億方以內(nèi).為了測定某市是否符合實(shí)施煤改氣計(jì)劃的標(biāo)準(zhǔn),某監(jiān)測站點(diǎn)于20168月某日起連續(xù)天監(jiān)測空氣質(zhì)量指數(shù)(AQI),數(shù)據(jù)統(tǒng)計(jì)如下:

1)根據(jù)上圖完成下列表格

空氣質(zhì)量指數(shù)(

天數(shù)

2)若按照分層抽樣的方法,從空氣質(zhì)量指數(shù)在以及的等級中抽取天進(jìn)行調(diào)研,再從這天中任取天進(jìn)行空氣顆粒物分析,記這天中空氣質(zhì)量指數(shù)在的天數(shù)為,求的分布列;

3)以頻率估計(jì)概率,根據(jù)上述情況,若在一年天中隨機(jī)抽取天,記空氣質(zhì)量指數(shù)在以上(含)的天數(shù)為,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為 ,若橢圓上一點(diǎn)滿足,且橢圓過點(diǎn),過點(diǎn)的直線與橢圓交于兩點(diǎn) .

(1)求橢圓的方程;

(2)過點(diǎn)軸的垂線,交橢圓,求證: , 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的圖像在處的切線方程;

(2)證明:

(3)若不等式對任意的均成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,.

)證明:

)若,求.

查看答案和解析>>

同步練習(xí)冊答案