【題目】設函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)似周期函數(shù),非零常數(shù)為函數(shù)似周期.現(xiàn)有下面四個關于似周期函數(shù)的命題:

①如果似周期函數(shù)似周期,那么它是周期為2的周期函數(shù);

②函數(shù)似周期函數(shù);

③如果函數(shù)似周期函數(shù),那么

以上正確結論的個數(shù)是(

A.0B.1C.2D.3

【答案】C

【解析】

根據(jù)題意,首先理解“似周期函數(shù)”的定義,逐一分析,從而可判斷命題的真假.

解:①∵似周期函數(shù)似周期,

,

它是周期為2的周期函數(shù),故①正確;

②若函數(shù)似周期函數(shù),則存在非零常數(shù),使

恒成立,故成立,但無解,故②錯誤;

③若函數(shù)似周期函數(shù), 則存在非零常數(shù),則,

恒成立,故恒成立,

恒成立,

,故,故③正確.

所以以上正確結論的個數(shù)是2.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左、右焦點,離心率為,點在橢圓上.

1)求橢圓的方程;

2)過的直線分別交橢圓于,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,.

1)求直線與平面所成角的正弦值;

2)在線段上是否存在點?使得二面角的大小為60°,若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為,且橢圓經(jīng)過.

(1)求橢圓的方程;

(2)是否存在實數(shù),使直線與橢圓有兩個不同交點,且為坐標原點),若存在,求出的值.不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,四邊形是邊長為2的菱形,,的中點,以為折痕將折起到的位置,使得平面平面,如圖2.

1)證明:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的最小值為2,求的值;

2)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側棱底面,,點的中點,作,交于點.

1)求證:平面;

2)求證:

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列四個結論:

① 函數(shù)的最小正周期是;

② 函數(shù)在區(qū)間上是減函數(shù);

③ 函數(shù)的圖像關于點對稱;

④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個單位,再向下平移1個單位得到.其中正確結論的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:對任意的nN*,都有an+1+Sn+11,又a1

1)求數(shù)列{an}的通項公式;

2)令bnlog2an,求nN*

查看答案和解析>>

同步練習冊答案