【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項1,3,7,,()組成集合,從集合中任取()個數(shù),其所有可能的個數(shù)的乘積的和為(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記.例如:當(dāng)時,,,;時,,,,.
(1)當(dāng)時,求,,,的值;
(2)證明:時集合的與時集合的(為以示區(qū)別,用表示)有關(guān)系式(,);
(3)試求(用表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線的右焦點分別為,短袖長為,點在曲線上,直線上,且.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)試通過計算判斷直線與曲線公共點的個數(shù).
(3)若點在都在以線段為直徑的圓上,且,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正項數(shù)列滿足:,則稱此數(shù)列為“比差等數(shù)列”.
(1)試寫出一個“比差等數(shù)列”的前項;
(2)設(shè)數(shù)列是一個“比差等數(shù)列”,問是否存在最小值,如存在,求出最小值;如不存在,請說明理由;
(3)已知數(shù)列是一個“比差等數(shù)列”,為其前項的和,試證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,空間幾何體由兩部分構(gòu)成,上部是一個底面半徑為1,高為2的圓錐,下部是一個底面半徑為1,高為2的圓柱,圓錐和圓柱的軸在同一直線上,圓錐的下底面與圓柱的上底面重合,點是圓錐的頂點,是圓柱下底面的一條直徑,、是圓柱的兩條母線,是弧的中點.
(1)求異面直線與所成的角的大;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,五邊形中,,,分別是線段的中點,且,現(xiàn)沿翻折,使得,得到的圖形如圖(2)所示.
圖(1) 圖(2)
(1)證明:平面;
(2)若平面與平面所成角的平面角的余弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)、、,如果存在實數(shù)、使得,那么稱為、的生成函數(shù).
(1)若,,,則是否分別為、的生成函數(shù)?并說明理由;
(2)設(shè),,,,生成函數(shù),若不等式在上有解,求實數(shù)的取值范圍;
(3)設(shè),取,,生成函數(shù)圖象的最低點坐標(biāo)為,若對于任意正實數(shù)、且,試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為常數(shù)).
(1)當(dāng)時,求曲線在處的切線方程;
(2)若函數(shù)在內(nèi)存在唯一極值點,求實數(shù)的取值范圍,并判斷是在內(nèi)的極大值點還是極小值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com