【題目】已知橢圓的短軸長為,離心率為。
(1)求橢圓的標準方程;
(2)設(shè)橢圓的左,右焦點分別為,左,右頂點分別為,,點,,為橢圓上位于軸上方的兩點,且,記直線,的斜率分別為,,若,求直線的方程.
【答案】(1)(2)
【解析】
(1)由題意可得:2b=4,,a2=b2+c2.聯(lián)立解出即可得出橢圓C的標準方程.(2)A(﹣3,0),B(3,0),F1(﹣1,0),F2(1,0),設(shè)F1M的方程為:x=my﹣1,M(),(>0),直線F1M與橢圓的另一個交點為M′().由根據(jù)對稱性可得:.直線方程與橢圓方程聯(lián)立化為:(8m2+9)y2﹣16my﹣64=0,根據(jù)根與系數(shù)的關(guān)系及其,得0,聯(lián)立解得m.
(1)由題意,得,.
又,∴,,.
∴橢圓C的標準方程為
(2)由(1),可知,,.
據(jù)題意,直線的方程為
記直線與橢圓的另一交點為,設(shè),.
∵,根據(jù)對稱性,得.
聯(lián)立,
消去,得,其判別式,
∴,.①
由,得,即.②
由①②,解得,
∵,∴.
∴.∴.
∴直線的方程為,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù)在上單調(diào)遞減,且,,,則的值( )
A. 恒為正B. 恒為負C. 恒為0D. 無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)與圓無公共點,過拋物線C上一點M作圓D的兩條切線,切點分別為E,F,當點M在拋物線C上運動時,直線EF都不通過的點構(gòu)成一個區(qū)域,求這個區(qū)域的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓稅收政策更好的為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育大病醫(yī)療、住房貸款利息、住房租金贈養(yǎng)老人等費用,并公布了相應(yīng)的定額扣除標準,決定自2019年1月1日起施行,某機關(guān)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表:
40歲及以下 | 40歲以上 | 合計 | |
基本滿意 | 15 | 30 | 45 |
很滿意 | 25 | 10 | 35 |
合計 | 40 | 40 | 80 |
(1)根據(jù)列聯(lián)表,能否有99%的把握認為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬員工貢獻積分(單位:分)給予相應(yīng)的住房補貼(單位:元),現(xiàn)有兩種補貼方案,方案甲:;方案乙:.已知這8名員工的貢獻積分為2分,3分,6分,7分,7分,11分,12分,12分,將采用方案甲比采用方案乙獲得更多補貼的員工記為“類員工”.為了解員工對補貼方案的認可度,現(xiàn)從這8名員工中隨機抽取4名進行面談,求恰好抽到3名“類員工”的概率。
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究男、女生的身高差異,現(xiàn)隨機從高二某班選出男生、女生各10人,并測量他們的身高,測量結(jié)果如下(單位:厘米):
男:164 178 174 185 170 158 163 165 161 170
女:165 168 156 170 163 162 158 153 169 172
(1)根據(jù)測量結(jié)果完成身高的莖葉圖(單位:厘米),并分別求出男、女生身高的平均值.
(2)請根據(jù)測量結(jié)果得到20名學(xué)生身高的中位數(shù)(單位:厘米),將男、女生身高不低于和低于的人數(shù)填入下表中,并判斷是否有的把握認為男、女生身高有差異?
人數(shù) | 男生 | 女生 |
身高 | ||
身高 |
參照公式:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(3)若男生身高低于165厘米為偏矮,不低于165厘米且低于175厘米為正常,不低于175厘米為偏高.假設(shè)可以用測量結(jié)果的頻率代替概率,試求從高二的男生中任意選出2人,恰有1人身高屬于正常的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(1)求橢圓的方程;
(2)若點、在橢圓上,且四邊形是矩形,求矩形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)若,求直線的普通方程及曲線的直角坐標方程;
(Ⅱ)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點,點M為BB1的中點.
(1)求證:PB1⊥平面PAC;
(2)求直線CM與平面PAC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com