【題目】橢圓上動點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為4,且到右焦點(diǎn)距離的最大值為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)為橢圓的上頂點(diǎn),若直線與橢圓交于兩點(diǎn)(不是上下頂點(diǎn)).試問:直線是否經(jīng)過某一定點(diǎn),若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由;
(3)在(2)的條件下,求面積的最大值.
【答案】(1);(2);(3)見解析
【解析】
(1)先根據(jù)已知得到a,c的值,再求b的值,即得橢圓的方程.(2) 設(shè)直線(k必存在),,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,再利用韋達(dá)定理化簡得到,再求出直線l所經(jīng)過的定點(diǎn).(3)先求出,再換元利用基本不等式求面積的最大值.
(1)由已知得:2a=4∴a=2,,,b=1,∴方程為:.
(2)依題意可設(shè)直線(k必存在),,將代入橢圓方程得.,∵
∴
∴ ,
∵點(diǎn)B為橢圓的上頂點(diǎn),且,
∴,
,或(舍去),∴直線l必過定點(diǎn)
(3)不難得到:,
,
令,則,
∴(當(dāng),即時(shí)取等號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx.
(1)若a=﹣1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值;
(3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點(diǎn)M(a,b)所經(jīng)過的區(qū)域面積= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為下崗人員免費(fèi)提供財(cái)會和計(jì)算機(jī)培訓(xùn),以提高下崗人員的再就業(yè)能力.每名下崗人員可以選擇參加一項(xiàng)培訓(xùn)、參加兩項(xiàng)培訓(xùn)或不參加培訓(xùn).已知參加過財(cái)會培訓(xùn)的有60%,參加過計(jì)算機(jī)培訓(xùn)的有75%,假設(shè)每個(gè)人對培訓(xùn)項(xiàng)目的選擇是相互獨(dú)立的,且各人的選擇相互之間沒有影響.
(1)任選1名下崗人員,求該人參加過培訓(xùn)的概率;
(2)任選3名下崗人員,記ξ為3人中參加過培訓(xùn)的人數(shù),求ξ的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),命題:實(shí)數(shù)滿足不等式;命題:實(shí)數(shù)滿足不等式,若是的充分不必要條件,則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)給出定義:
設(shè)是函數(shù)的導(dǎo)數(shù),是函數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,
某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”:任意一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心,給定函數(shù),請根據(jù)上面探究結(jié)果:計(jì)算____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)上的點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過兩個(gè)焦點(diǎn),A,B是橢圓C的長軸端點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程和圓O的方程;
(2)設(shè)P、Q分別是橢圓C和圓O上位于y軸兩側(cè)的動點(diǎn),若直線PQ與x平行,直線AP、BP與y軸的交點(diǎn)即為M、N,試證明∠MQN為直角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第31屆夏季奧林匹克運(yùn)動會于2016年8月5日至8月21日在巴西里約熱內(nèi)盧舉行.如表是近五屆奧運(yùn)會中國代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).
第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 | 第26屆亞特蘭大 | |
中國 | 38 | 51 | 32 | 28 | 16 |
俄羅斯 | 24 | 23 | 27 | 32 | 26 |
(1)根據(jù)表格中兩組數(shù)據(jù)在答題卡上完成近五屆奧運(yùn)會兩國代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);
(2)如表是近五屆奧運(yùn)會中國代表團(tuán)獲得的金牌數(shù)之和(從第26屆算起,不包括之前已獲得的金牌數(shù))隨時(shí)間變化的數(shù)據(jù):
時(shí)間(屆) | 26 | 27 | 28 | 29 | 30 |
金牌數(shù)之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散點(diǎn)圖如圖:
由圖可以看出,金牌數(shù)之和與時(shí)間之間存在線性相關(guān)關(guān)系,請求出關(guān)于的線性回歸方程,并預(yù)測到第32屆奧運(yùn)會時(shí)中國代表團(tuán)獲得的金牌數(shù)之和為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com