【題目】設m是實數(shù),,若函數(shù)為奇函數(shù).
求m的值;
用定義證明函數(shù)在R上單調(diào)遞增;
若不等式對任意恒成立,求實數(shù)k的取值范圍.
【答案】(1)(2)見解析(3)
【解析】
(1)根據(jù)奇函數(shù)的定義f(﹣x)=﹣f(x),求出m的值;
(2)利用單調(diào)性的定義證明f(x)是R上的單調(diào)增函數(shù);
(3)根據(jù)函數(shù)的奇偶性和單調(diào)性定義,把不等式化為kx﹣x<﹣x+x2+1在R上恒成立,
再利用判別式△<0求得實數(shù)k的取值范圍.
由函數(shù)為R上的奇函數(shù),對任意的,都有,
即,解得;
證明:由知,,;任取、,且,
則;
,,,即,
函數(shù)在R上單調(diào)遞增;
不等式對任意恒成立,
即在R上恒成立,為R上的奇函數(shù),
在R上恒成立,
由知在R上單調(diào)遞增;在R上恒成立,
即在R上恒成立,,解得實數(shù)k的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】集合、為的一個等濃二分劃(即,,且.記集合中所有數(shù)的積為,集合中所有數(shù)的積為,稱為的等濃二分劃的特征數(shù).證明:
(1)集合的等濃二分劃的特征數(shù)一定為合數(shù);
(2)若等濃二分劃的特征數(shù)不為2的倍數(shù),則該特征數(shù)為的倍數(shù).
注:有限集合的元素個數(shù)簡記為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)集其中,,2,,n,,若對任意的2,,都存在,,使得下列三組向量中恰有一組共線:
向量與向量;
向量與向量;
向量與向量,則稱X具有性質(zhì)P,例如2,具有性質(zhì)P.
若3,具有性質(zhì)P,則x的取值為______
若數(shù)集3,,具有性質(zhì)P,則的最大值與最小值之積為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在多面體中, 與均為邊長為2的正方形, 為等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷,定義:
f1(x)=min{f(t)| a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)| a≤t≤x}(x∈[a,b])。
其中,min{f(x)| x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值。若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”。
(1)若f(x)=sinx,x∈[, ],請直接寫出f1(x),f2(x)的表達式;
(2)已知函數(shù)f(x)=(x-1)2,x∈[-1,4],試判斷f(x)是否為[-1,4]上的“k階收縮函數(shù)”,如果是,求出對應的k;如果不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體挖去部分后的三視圖如圖所示,若其正視圖和側(cè)視圖都是由三個邊長為2的正三角形組成,則該幾何體的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了 1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進行檢驗.
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: , )
參考數(shù)據(jù): ,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 圖象上有且僅有四個不同的點關(guān)于直線y=e的對稱點在函數(shù)g(x)=kx+2e+1的圖象上,則實數(shù)k的取值范圍為( )
A.(1,2)
B.(﹣1,0)
C.(﹣2,﹣1)
D.(﹣6,﹣1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,a,b,c為角A,B,C所對的邊,且2cos2 +(cosB﹣ sinB)cosA=1.
(1)求角A的值;
(2)求f(x)=4cosxcos(x﹣A)在x∈[0, ]的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com