【題目】如圖,在四棱錐中,,,.

1)證明:平面

2)若的中點(diǎn),,,求二面角的余弦值.

【答案】1)證明見解析;(2.

【解析】

(1)利用勾股定理可得即可證明平面.

(2)根據(jù)垂直關(guān)系可以建立以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系,再利用空間向量的方法分別求得平面的一個(gè)法向量與平面的一個(gè)法向量,再利用二面角的夾角公式求解即可.

1)因?yàn)?/span>,所以,同理可得.

因?yàn)?/span>,所以平面.

2)因?yàn)?/span>,所以、兩兩垂直,以為坐標(biāo)原點(diǎn),

建立如圖所示的空間直角坐標(biāo)系,

因?yàn)?/span>,所以,,,,

因?yàn)?/span>的中點(diǎn),所以,

因?yàn)?/span>,,所以,

所以,.

設(shè)平面的一個(gè)法向量為,

,得,

,得.

的中點(diǎn),連接,易證平面,

則平面的一個(gè)法向量為.設(shè)二面角的平面角為,

由圖知,所以,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面,底面為梯形,,.

1平面;

2平面;

3是棱的中點(diǎn),棱上存在一點(diǎn),使.

正確命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓的短軸的兩個(gè)端點(diǎn)分別為、為橢圓上異于、的動(dòng)點(diǎn),且的面積最大值為.

)求橢圓的方程;

)射線與橢圓交于點(diǎn),過(guò)點(diǎn)作傾斜角互補(bǔ)的兩條直線,它們與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)和點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校近幾年來(lái)通過(guò)書香校園主題系列活動(dòng),倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計(jì)圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是(

A.2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長(zhǎng)

B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7

C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3

D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為正方形,PACE,AB=CEPA,PA⊥平面ABCD.

1)證明:PE⊥平面DBE;

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)有一塊矩形地塊,其中,單位:百米.已知是一個(gè)游泳池,計(jì)劃在地塊內(nèi)修一條與池邊相切于點(diǎn)的直路(寬度不計(jì)),交線段于點(diǎn),交線段于點(diǎn).現(xiàn)以點(diǎn)為坐標(biāo)原點(diǎn),以線段所在直線為軸,建立平面直角坐標(biāo)系,若池邊滿足函數(shù)的圖象,若點(diǎn)軸距離記為.

1)當(dāng)時(shí),求直路所在的直線方程;

2)當(dāng)為何值時(shí),地塊在直路不含泳池那側(cè)的面積取到最大,最大值時(shí)多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)試比較的大小.

2)若函數(shù)的兩個(gè)零點(diǎn)分別為,

①求的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點(diǎn)處的切線平行于軸,求函數(shù)上的最小值;

2)若關(guān)于的方程上有兩個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列4個(gè)說(shuō)法中正確的有(

①命題,則的逆否命題為;

②若,則;

③若復(fù)合命題:為假命題,則pq均為假命題;

的充分不必要條件.

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案