【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面;

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?

【答案】(Ⅰ)見解析;(Ⅱ)當(dāng)二面角的余弦值為時(shí),直線與平面所成的角為

【解析】試題分析:現(xiàn)根據(jù)已知,結(jié)合平面幾何知識(shí)證明,進(jìn)而可證四邊形是平行四邊形,則從而,利用底面結(jié)合線面垂直、面面垂直的判定定理可得結(jié)果;為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,是平面的一個(gè)法向量,

再求出平面的一個(gè)法向量,利用空間向量夾角余弦公式可得結(jié)果.

試題解析:(Ⅰ)∵, ,∴,

∵底面是直角梯形, , ,

,即,

,

, ,∴

∴四邊形是平行四邊形,則

,

底面,∴

,

平面,∵平面,

∴平面平面

(Ⅱ)解:∵, ,∴平面,則為直線與平面所成的角,

與平面所成夾角為,則,即,

的中點(diǎn)為,連接,則,以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,

, , , ,

,

設(shè)平面的法向量,則

,則, ,∴,

是平面的一個(gè)法向量,

,

即當(dāng)二面角的余弦值為時(shí),直線與平面所成的角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中, ,底面是菱形,且, ,過點(diǎn)作直線 為直線上一動(dòng)點(diǎn).

(1)求證:

(2)當(dāng)二面角的大小為時(shí),求的長(zhǎng);

(3)在(2)的條件下,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1: ,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1

相同的離心率.

(1)求橢圓Q的方程;

(2)設(shè)0為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【浙江省名校協(xié)作體2017屆高三上學(xué)期聯(lián)考】已知橢圓,經(jīng)過橢圓上一點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),且點(diǎn)橫坐標(biāo)為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)若橢圓的一條動(dòng)弦,為坐標(biāo)原點(diǎn),面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試語文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[6070),[7080),[80,90),[90,100]

1)求圖中a的值;

2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語文成績(jī)的平均分;

3)若這100名學(xué)生語文成績(jī)某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求數(shù)學(xué)成績(jī)?cè)?/span>[5090)之外的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高一年級(jí)期中考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[40,50),[50,60)…,[80,90),[90,100],然后畫出如圖所示部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及60分以上為及格)和平均分;
(3)把從[80,90)分?jǐn)?shù)段選取的最高分的兩人組成B組,[90,100]分?jǐn)?shù)段的學(xué)生組成C組,現(xiàn)從B,C兩組中選兩人參加科普知識(shí)競(jìng)賽,求這兩個(gè)學(xué)生都來自C組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求的軌跡

(2)過軌跡上任意一點(diǎn)作圓的切線,設(shè)直線的斜率分別是,試問在三個(gè)斜率都存在且不為0的條件下, 是否是定值,請(qǐng)說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間四邊形 分別在上,

(1),異面直線所成的角的大小為,求所成的角的大;

(2)當(dāng)四邊形是平面四邊形時(shí),試判斷三條直線的位置關(guān)系,并選擇其中一種位置關(guān)系說明理由;

(3)已知當(dāng),異面直線所成角為,當(dāng)四邊形是平行四邊形時(shí),試判斷點(diǎn)在什么位置時(shí),四邊形的面積最大,試求出最大面積并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c, =( ,1), =(sinA,cosA), 的夾角為60°. (Ⅰ)求角A的大;
(Ⅱ)若sin(B﹣C)=2cosBsinC,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案