【題目】已知拋物線的焦點為,為上位于第一象限的任意一點,過點的直線交于另一點,交軸的正半軸于點.
(1)若當點的橫坐標為,且為等邊三角形,求的方程;
(2)對于(1)中求出的拋物線,若點,記點關(guān)于軸的對稱點為,交軸于點,且,求證:點的坐標為,并求點到直線的距離的取值范圍.
【答案】(1) ; (2)證明見解析,
【解析】
(1)由拋物線焦半徑公式知,根據(jù)等邊三角形特點可知,從而得到點坐標;利用中點坐標公式求得中點;根據(jù)可構(gòu)造方程求得,從而得到所求方程;(2)設(shè)直線的方程為:,,,將直線方程與拋物線方程聯(lián)立可得韋達定理的形式;利用三點共線,根據(jù)向量共線坐標表示可得,代入韋達定理整理得到點坐標;利用為等腰直角三角形可求得,從而構(gòu)造出方程求得,根據(jù)韋達定理的形式可確定的取值范圍;利用點到直線距離公式可將問題轉(zhuǎn)化為關(guān)于的函數(shù)值域的求解問題;利用函數(shù)單調(diào)性求得所求的范圍即可.
(1)由題意知:,
為等邊三角形
中點為:
由為等邊三角形知:,即軸 ,解得:
的方程為:
(2)設(shè)直線的方程為:,,,則
由得:
設(shè),則,
三點共線
即
為等腰直角三角形
即
,可得:
,又
令,,則
在上單調(diào)遞減
科目:高中數(shù)學 來源: 題型:
【題目】在直角極坐標系中,直線的參數(shù)方程為其中為參數(shù),其中為的傾斜角,且其中,以坐標原點為極點,軸的正半軸為極軸建立平面直角坐標系,曲線C1的極坐標方程,曲線C2的極坐標方程.
(1)求C1、C2的直角坐標方程;
(2)已知點P(-2,0),與C1交于點,與C2交于A,B兩點,且,求的普通方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),對任意實數(shù),均滿足,且,數(shù)列,滿足,,則下列說法正確的有_____
①數(shù)列為等比數(shù)列;
②數(shù)列為等差數(shù)列;
③若為數(shù)列的前n項和,則;
④若為數(shù)列{}的前項和,則;
⑤若為數(shù)列{}的前項和,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)若函數(shù)在上有唯一零點,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點處的切線的斜率為1,問:在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為1,,為線段,上的動點,過點,,的平面截該正方體的截面記為,則下列命題正確的是________.
①當且時,為等腰梯形;
②當,分別為,的中點時,幾何體的體積為;
③當為中點且時,與的交點為,滿足;
④當且時, 的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C:的左、右項點分別為A1,A2,左右焦點分別為F1,F(xiàn)2,離心率為,|F1F2|=,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)過點P(4,m)的直線PA1,PA2與橢圓分別交于點M,N,其中m>0,求的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線y=f(x)在點(1,f(1))處的切線方程為y=x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(2)若x≥1,f(x)≤kx恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線與直線垂直,求的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,求實數(shù)的取值范圍;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com