動點在圓x2+y2=1上移動時,它與定點B(3,0)連線的中點軌跡方程是(    )
A.(x+3)2+y2=4B.(x-3)2+y2=1
C.(2x-3)2+4y2=1D.(x+)2+y2=
C   
設(shè)中點坐標(biāo)為P(x,y),則動點M(2x-3,2y),因為M在圓上移動,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求直線被圓所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知圓M過兩點C(1,-1)、D(-1,1)且圓心M在直線x+y-2=0上。
(1)、求圓M的方程
(2)、設(shè)P是直線3x+4y+8=0上的動點,PA、PB是圓M的兩條切線,A、B為切點,求四邊形PAMB的面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(3,)且與圓相切的直線方程是                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C:,從動圓M:上的動點P向圓C引切線,切點分別是E,F,則( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線,圓方程為
(1)求證:直線和圓相交
(2)當(dāng)圓截直線所得弦最長時,求的值
(3)直線將圓分成兩個弓形,當(dāng)弓形面積之差最大時,求直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點A(1,-1)、B(-1,1)且圓心在直線上的圓的方程是              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點,且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點到直線的距離為,若存在,求出的范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓相交于兩點(其中是實數(shù)),且是直角三角形(是坐標(biāo)原點),則點與點之間距離的最大值為                                                  (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案