【題目】教育部記錄了某省2008到2017年十年間每年自主招生錄取的人數(shù)為方便計算,2008年編號為1,2009年編號為2,,2017年編號為10,以此類推數(shù)據(jù)如下:
年份編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù) | 3 | 5 | 8 | 11 | 13 | 14 | 17 | 22 | 30 | 31 |
Ⅰ根據(jù)前5年的數(shù)據(jù),利用最小二乘法求出y關(guān)于x的回歸方程,并計算第8年的估計值和實際值之間的差的絕對值;
Ⅱ根據(jù)Ⅰ所得到的回歸方程預(yù)測2018年該省自主招生錄取的人數(shù).
其中,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos .
(1)若a=3,b= ,求c的值;
(2)若f(A)=sinA( cosA﹣sinA),求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 。
(1)求函數(shù)的定義域和值域;
(2)設(shè)(為實數(shù)),求在時的最大值;
(3)對(2)中,若對所有的實數(shù)及恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(3,5),傾斜角為.
(1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l與曲線C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+ mx2﹣(m+1)x+1.
(1)若g(x)=f'(x),討論g(x)的單調(diào)性;
(2)若f(x)在x=1處取得極小值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著電子商務(wù)的發(fā)展, 人們的購物習(xí)慣正在改變, 基本上所有的需求都可以通過網(wǎng)絡(luò)購物解決. 小韓是位網(wǎng)購達人, 每次購買商品成功后都會對電商的商品和服務(wù)進行評價. 現(xiàn)對其近年的200次成功交易進行評價統(tǒng)計, 統(tǒng)計結(jié)果如下表所示.
對服務(wù)好評 | 對服務(wù)不滿意 | 合計 | |
對商品好評 | 80 | 40 | 120 |
對商品不滿意 | 70 | 10 | 80 |
合計 | 150 | 50 | 200 |
(1) 是否有的把握認(rèn)為商品好評與服務(wù)好評有關(guān)? 請說明理由;
(2) 若針對商品的好評率, 采用分層抽樣的方式從這200次交易中取出5次交易, 并從中選擇兩次交易進行觀察, 求只有一次好評的概率.
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥BD,底面ABCD是邊長為a的菱形,∠BAD=120°,PA=b,AC與BD交于點O,M為OC的中點.
(1)求證:平面PAC⊥平面ABCD;
(2)若∠PAC=90°,二面角O﹣PM﹣D的正切值為 ,求a:b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com