【題目】設函數(shù) .
(1)當時,求的定義域;
(2)若函數(shù)的定義域為非空集合,求實數(shù)的取值范圍.
【答案】(1) ; (2) .
【解析】
(1)根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可;
(2)問題轉(zhuǎn)化為x∈R,使得不等式a≥x+|x﹣1|成立,求出函數(shù)的最小值,求出a的范圍即可.
(1)當a=3時,,
則3﹣x﹣|x﹣1|≥0x+|x﹣1|≤3.
令g(x)=x+|x﹣1|,
則
由g(x)≤3x≤2.
即函數(shù)f(x)的定義域為(﹣∞,2];
(2)由題意知,a﹣x﹣|x﹣1|≥0a≥x+|x﹣1|,
則x∈R,使得不等式a≥x+|x﹣1|成立.
由(1)知當x≤1時,g(x)為常數(shù)1;
當x>1時,g(x)為增函數(shù).
則當x≤1時,g(x)min=1,
由a≥x+|x﹣1|得a≥1.
即a的取值范圍是[1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ( e為自然對數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實數(shù)a的取值范圍為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為ρsin(θ+ )= ,圓C的方程為 (θ為參數(shù)).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當不超過尾/立方米時, 的值為千克/年;當時, 是的一次函數(shù),且當時, .
()當時,求關于的函數(shù)的表達式.
()當養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構(gòu)成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點, 軸正半軸為極軸建立極坐標系,已知圓的極坐標方程為,直線的參數(shù)方程為(為參數(shù)),若與交于兩點.
(Ⅰ)求圓的直角坐標方程;
(Ⅱ)設,求的值.
【答案】(1);(2)1.
【解析】試題分析:(1)先根據(jù) 將圓的極坐標方程化為直角坐標方程;(2)先將直線參數(shù)方程調(diào)整化簡,再將直線參數(shù)方程代入圓直角坐標方程,根據(jù)參數(shù)幾何意義得,最后利用韋達定理求解
試題解析:(Ⅰ)由,得,
(Ⅱ)把,
代入上式得,
∴,則, ,
.
【題型】解答題
【結(jié)束】
23
【題目】證明:(Ⅰ)已知是正實數(shù),且.求證: ;
(Ⅱ)已知,且, , .求證: 中至少有一個是負數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com