【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點,如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點到平面的距離.
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:(1)在平面內(nèi)找到與直線平行的直線,通過三角形的中位線證明直線AB與直線MN平行且相等,從而證明,可證得直線平面.
(2)通過證明直線BC垂直于平面BDE內(nèi)的兩條相交直線BD,ED可證得直線平面.
(3)利用等體積法,可求得點D 到平面BEC的距離.
試題解析: (1)證明:取中點,連結(jié).
在中, 分別為的中點,
所以,且.
由已知,
所以四邊形為平行四邊形.
所以.
又因為平面,且平面,
所以平面.
(2)證明:在正方形中, ,
又因為平面平面,且平面平面,
所以平面.
所以
在直角梯形中, ,可得.
在中, .
所以.
所以平面.
(3)由(2)知,
所以,又因為平面
又.
所以, 到面的距離為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: (),設(shè)為圓與軸負(fù)半軸的交點,過點作圓的弦,并使弦的中點恰好落在軸上.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)延長交曲線于點,曲線在點處的切線與直線交于點,試判斷以點為圓心,線段長為半徑的圓與直線的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為, 已知,且, , 三個數(shù)依次成等差數(shù)列.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)若數(shù)列滿足,設(shè)是其前項和,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線的方程:
(1)經(jīng)過兩條直線2x﹣3y+10=0和3x+4y﹣2=0的交點,且垂直于直線3x﹣2y+4=0;
(2)經(jīng)過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點,且平行于直線4x﹣3y﹣7=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若任意,不等式恒成立,求實數(shù)的取值范圍;
(2)求證:對任意, ,都有成立;
(3)對于給定的正數(shù),有一個最大的正數(shù),使得整個區(qū)間上,不等式恒成立,求出的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.
(1)若的坐標(biāo)為,求的值;
(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點、和、,記直線的斜率為.
(Ⅰ)求的值;
(Ⅱ)當(dāng)變化時,試問直線是否恒過定點? 若恒過定點,求出該定點坐標(biāo);若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時,函數(shù)f(x)的解析式為 .
(1)求當(dāng)x<0時函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com