【題目】為推行“新課堂”教學法,某老師在甲乙兩個班分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式進行教學實驗.為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出的莖葉圖(如下圖所示),記成績不低于70分者為“成績優(yōu)良”.

1)分別計算甲乙兩班20個樣本中,分數(shù)前十的平均分,并據(jù)此判斷哪種教學方式的教學效果更佳;

2)甲乙兩班40個樣本中,成績在60分以下的學生中任意選取2人,求這2人來自不同班級的概率.

【答案】1,,“新課堂”教學方式;(2.

【解析】

1)分別求出甲班樣本中分數(shù)前十的平均分和乙班樣本中分數(shù)前十的平均分,由甲班樣本中分數(shù)前十的平均分低于乙班樣本中分數(shù)前十的平均分,得出新課堂教學方式的教學效果更佳;

2)樣本中成績60分以下的學生中甲班有4人,記為:,,,乙班有2人,記為:12.然后利用列舉法能求出結果.

1)甲班樣本中成績前十的平均分為

.

乙班樣本中成績前十的平均分為

.

甲班樣本成績前十的平均分遠低于乙班樣本成績前十的平均分,大致可以判斷“新課堂”教學方式的教學效果更佳;

2)樣本中成績60分以下的學生中甲班有4人,記為:,,,,乙班有2人,記為:1,2.

則從,,,12六個元素中任意選2個的所有基本事件如下:,,,,,,,,,,,12,一共有15個基本事件,

表示“這2人來自不同班級”有如下:,,,,,,一共有8個基本事件,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側面為菱形,的中點為,且平面.

(1)證明:

(2)若AC⊥,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:

(1) AD邊所在直線的方程;

(2) DC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

1)若直線與圓交于不同的兩點,,當時,求的值;

2)若,是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關:

箱產(chǎn)量<50 kg

箱產(chǎn)量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】要得到函數(shù)的圖象, 只需將函數(shù)的圖象(

A. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

B. 所有點的橫坐標伸長到原來的2(縱坐標不變), 再將所得的圖像向左平移個單位.

C. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

D. 所有點的橫坐標縮短到原來的(縱坐標不變), 再將所得的圖像向左平移個單位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐PABCD,AP平面PCDADBC,ABBCAD,EF分別為線段AD,PC的中點.

(1)求證AP平面BEF;

(2)求證BE平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的圖像過點,且在點P處的切線方程為,試求函數(shù)的單調區(qū)間;

(2)當時,若函數(shù)恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)直接寫出的零點;

2)在坐標系中,畫出的示意圖(注意要畫在答題紙上)

3)根據(jù)圖象討論關于的方程的解的個數(shù):

4)若方程,有四個不同的根、直接寫出這四個根的和;

5)若函數(shù)在區(qū)間上既有最大值又有最小值,直接寫出a的取值范圍.

查看答案和解析>>

同步練習冊答案