【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))).
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值并討論的單調(diào)性;
(2)若,函數(shù)有兩個(gè)零點(diǎn),,證明:.
【答案】(1);在單調(diào)遞減,在單調(diào)遞增;(2)詳見(jiàn)解析.
【解析】
(1)由得到,所以,分,兩種情況討論即可得到的單調(diào)性;
(2),當(dāng)時(shí),函數(shù)在上單調(diào)遞增,不存在兩個(gè)零點(diǎn),當(dāng)時(shí),,,,不妨設(shè),令,則,,,,欲證,只需證明,再構(gòu)造函數(shù)證明即可.
(1),因?yàn)?/span>是函數(shù)的極值點(diǎn),
所以,所以,所以.
當(dāng)時(shí),,,所以,
當(dāng)時(shí),,,所以,
所以在單調(diào)遞減,在單調(diào)遞增.
(2).
當(dāng)時(shí),函數(shù)在上單調(diào)遞增,不存在兩個(gè)零點(diǎn),∴.
由題意知,,
∴,,,,
可得,
不妨設(shè),令,則.
由,解得,,
∴.
欲證,只需證明,即證,
設(shè),則.
設(shè),則,∴單調(diào)遞增.
∴,即,∴在區(qū)間上單調(diào)遞增,
∴,即,原不等式得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)的直線與拋物線交于不同的兩點(diǎn),點(diǎn),連接的直線與拋物線的另一交點(diǎn)分別為,如圖所示.
(Ⅰ)若,求直線的斜率;
(Ⅱ)試判斷直線的斜率是否為定值,如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定義:以橢圓中心為圓心,長(zhǎng)軸為直徑的圓叫做橢圓的“輔助圓”.過(guò)橢圓第四象限內(nèi)一點(diǎn)M作x軸的垂線交其“輔助圓”于點(diǎn)N,當(dāng)點(diǎn)N在點(diǎn)M的下方時(shí),稱點(diǎn)N為點(diǎn)M的“下輔助點(diǎn)”.已知橢圓E:上的點(diǎn)的下輔助點(diǎn)為(1,﹣1).
(1)求橢圓E的方程;
(2)若△OMN的面積等于,求下輔助點(diǎn)N的坐標(biāo);
(3)已知直線l:x﹣my﹣t=0與橢圓E交于不同的A,B兩點(diǎn),若橢圓E上存在點(diǎn)P,滿足,求直線l與坐標(biāo)軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是_________;若存在實(shí)數(shù),使函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與橢圓有一個(gè)相同的焦點(diǎn),過(guò)點(diǎn)且與軸不垂直的直線與拋物線交于,兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)為.
(1)求拋物線的方程;
(2)試問(wèn)直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)經(jīng)過(guò)點(diǎn)(﹣2,0)和,橢圓C上三點(diǎn)A,M,B與原點(diǎn)O構(gòu)成一個(gè)平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點(diǎn)B是橢圓C左頂點(diǎn),求點(diǎn)M的坐標(biāo);
(3)若A,M,B,O四點(diǎn)共圓,求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值.
(2),若不等式在上恒成立,求的最大值.
(3)是否存在實(shí)數(shù),使得函數(shù)在上的值域?yàn)?/span>?如果存在,請(qǐng)給出證明;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),給出以下四個(gè)命題:
①的圖象關(guān)于軸對(duì)稱;
②在上是減函數(shù);
③是周期函數(shù);
④在上恰有兩個(gè)零點(diǎn).
其中真命題的序號(hào)是______.(請(qǐng)寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com