【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點.
(1)求異面直線DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
【答案】(1) (2)
【解析】
(1)以C為原點,CA、CB、CC1為坐標軸,建立空間直角坐標系C﹣xyz,寫出要用的點的坐標,寫出兩個向量的方向向量,根據(jù)兩個向量所成的角得到兩條異面直線所成的角.
(2)先求兩個平面的法向量,在第一問的基礎(chǔ)上,有一個平面的法向量是已知的,只要寫出向量的表示形式就可以,另一個平面的向量需要求出,根據(jù)兩個法向量所成的角得到結(jié)果.
(1)如圖所示,以C為原點,CA、CB、CC1為坐標軸,建立空間直角坐標系
C﹣xyz.
則C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1).
所以(﹣2,0,1),(0,﹣2,﹣2).
所以cos.
即異面直線DC1與B1C所成角的余弦值為.
(2)因為(0,2,0),(2,0,0),(0,0,2),
所以0,0,
所以為平面ACC1A1的一個法向量.
因為(0,﹣2,﹣2),(2,0,1),
設(shè)平面B1DC的一個法向量為n,n=(x,y,z).
由,得
令x=1,則y=2,z=﹣2,n=(1,2,﹣2).
所cos<n,.
所以二面角B1﹣DC﹣C1的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在區(qū)間,上同時存在函數(shù)的極值點和零點,求實數(shù)的取值范圍.
(2)如果對任意、,有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.
(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);
(Ⅱ)用隨機抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;
(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌校S機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com