【題目】已知函數(shù)圖象相鄰兩條對(duì)稱軸之間的距離為,將函數(shù)的圖象向左平移個(gè)單位,得到的圖象關(guān)于軸對(duì)稱,則( )

A. 函數(shù)的周期為 B. 函數(shù)圖象關(guān)于點(diǎn)對(duì)稱

C. 函數(shù)圖象關(guān)于直線對(duì)稱 D. 函數(shù)上單調(diào)

【答案】D

【解析】

根據(jù)對(duì)稱軸之間的距離,求得周期,再根據(jù)周期公式求得;再平移后,根據(jù)關(guān)于y軸對(duì)稱可求得的值,進(jìn)而求得解析式。根據(jù)解析式判斷各選項(xiàng)是否正確。

因?yàn)楹瘮?shù)圖象相鄰兩條對(duì)稱軸之間的距離為

所以周期 ,則

所以函數(shù)

函數(shù)的圖象向左平移單位,得到的解析式為

因?yàn)閳D象關(guān)于y軸對(duì)稱,所以

,即,k Z

因?yàn)?/span>

所以

所以周期,所以A錯(cuò)誤

對(duì)稱中心滿足,解得,所以B錯(cuò)誤

對(duì)稱軸滿足,解得,所以C錯(cuò)誤

單調(diào)增區(qū)間滿足,解得,而內(nèi),所以D正確

所以選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小電子產(chǎn)品2018年的價(jià)格為9/件,年銷量為件,經(jīng)銷商計(jì)劃在2019年將該電子產(chǎn)品的價(jià)格降為/件(其中),經(jīng)調(diào)查,顧客的期望價(jià)格為5/件,經(jīng)測(cè)算,該電子產(chǎn)品的價(jià)格下降后年銷量新增加了件(其中常數(shù).已知該電子產(chǎn)品的成本價(jià)格為4/.

1)寫出該電子產(chǎn)品價(jià)格下降后,經(jīng)銷商的年收益與實(shí)際價(jià)格的函數(shù)關(guān)系式:(年收益=年銷售收入-成本)

2)設(shè),當(dāng)實(shí)際價(jià)格最低定為多少時(shí),仍然可以保證經(jīng)銷商2019年的收益比2018年至少增長(zhǎng)20%?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輛汽車以千米小時(shí)的速度在高速公路上勻速行駛(考慮到高速公路行車安全要求時(shí),每小時(shí)的油耗(所需要的汽油量)為升,其中為常數(shù),且

1)若汽車以120千米小時(shí)的速度行駛時(shí),每小時(shí)的油耗為11.5升,欲使每小時(shí)的油耗不超過9升,求的取值范圍;

2)求該汽車行駛100千米的油耗的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(,)的部分圖像如圖所示.

1)求函數(shù)的解析式及圖像的對(duì)稱軸方程;

2)把函數(shù)圖像上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍(縱坐標(biāo)不變),再向左平移個(gè)單位,得到函數(shù)的圖象,求關(guān)于x的方程時(shí)所有的實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,,…,是一個(gè)數(shù)列,對(duì)每個(gè),.如果兩數(shù)不同,;如果,兩數(shù)相同,.于是得到一個(gè)新數(shù)列,,…,,其中.重復(fù)上述方法,得到一個(gè)由01兩個(gè)數(shù)字組成的三角形數(shù)表,最后一行僅一個(gè)數(shù)字,求這張數(shù)字表中1的和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】類似于平面直角坐標(biāo)系,定義平面斜坐標(biāo)系:設(shè)數(shù)軸的交點(diǎn)為,與、軸正方向同向的單位向量分別是、,且的夾角為,其中,由平面向量基本定理:對(duì)于平面內(nèi)的向量,存在唯一有序?qū)崝?shù)對(duì),使得,把叫做點(diǎn)在斜坐標(biāo)系中的坐標(biāo),也叫做向量在斜坐標(biāo)系中的坐標(biāo),記為,在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點(diǎn)方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如時(shí),方程表示斜坐標(biāo)系內(nèi)一條過點(diǎn),且方向向量為的直線.

1)若,,求;

2)若,已知點(diǎn)和直線;

①求的一個(gè)法向量;

②求點(diǎn)到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A4,0)、B1,0),動(dòng)點(diǎn)M滿足|AM|=2|BM|

1)求動(dòng)點(diǎn)M的軌跡C的方程;

2)直線lx+y=4,點(diǎn)Nl,過N作軌跡C的切線,切點(diǎn)為T,求NT取最小時(shí)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,橢圓 的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率

(1)求橢圓G 的標(biāo)準(zhǔn)方程;

(2)已知直線 與橢圓 交于 兩點(diǎn),直線 與橢圓 交于 兩點(diǎn),且 ,如圖所示.

①證明: ;

②求四邊形 的面積 的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案