【題目】設橢圓的離心率為,以橢圓四個頂點為頂點的四邊形的面積為.

1)求橢圓E的方程;

2)過橢圓E的右焦點作直線E交于A,B兩點,O為坐標原點,求面積的最大值,并求此時直線的方程.

【答案】1;(2面積的最大值為,此時直線的方程為:.

【解析】

1)利用橢圓四個頂點構成的四邊形面積、離心率和橢圓關系可構造方程組求得,進而得到橢圓方程;

2)①當直線斜率不存在時,易求得;②當直線斜率存在時,假設直線方程,與橢圓方程聯(lián)立得到韋達定理的形式,利用弦長公式求得,利用點到直線距離公式求出,從而得到,利用函數(shù)求最值的方法可求得的范圍;綜合兩種情況可得最終結果.

1以橢圓四個頂點為頂點的四邊形的面積為,

…①,又…②,…③,

則①②③聯(lián)立可求得:,,

橢圓的方程為:.

2)①當直線斜率不存在時,則方程為,,

②當直線斜率存在時,可設其方程為:,由題意可知:,

得:

,,則,,

又原點到直線距離,

,

,則,

,,,

,

綜上所述:面積的最大值為,此時直線的方程為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面,,的中點.

(Ⅰ)證明:平面平面;

(Ⅱ)求異面直線所成角的余弦值;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人在相同的條件下投籃5輪,每輪甲、乙各投籃10次,投籃命中次數(shù)的情況如圖所示(實線為甲的折線圖,虛線為乙的折線圖),則以下說法錯誤的是( )

A. 甲投籃命中次數(shù)的眾數(shù)比乙的小

B. 甲投籃命中次數(shù)的平均數(shù)比乙的小

C. 甲投籃命中次數(shù)的中位數(shù)比乙的大

D. 甲投籃命中的成績比乙的穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游區(qū)每年各個月份接待游客的人數(shù)近似地滿足周期性規(guī)律,因而第個月從事旅游服務工作的人數(shù)可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示1月份,是正整數(shù),,. 統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務工作的人數(shù)有以下規(guī)律:

每年相同的月份,該地區(qū)從事旅游服務工作的人數(shù)基本相同;

該地區(qū)從事旅游服務工作的人數(shù)最多的8月份和最少的2月份相差400人;

2月份該地區(qū)從事旅游服務工作的人數(shù)為100人,隨后逐月遞增直到8月份達到最多.

(1)試根據(jù)已知信息,求的表達式;

(2)一般地,當該地區(qū)從事旅游服務工作的人數(shù)在400400以上時,該地區(qū)也進入了一年中的旅游旺季,那么,一年中的哪幾個月是該地區(qū)的旅游旺季?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定函數(shù),若存在常數(shù),,使得函數(shù)對其公共定義域的任何實數(shù)分別滿足,則稱直線為函數(shù)隔離直線,給出下列四組函數(shù):

1; 2,

3,; 4,;

其中函數(shù)存在隔離直線的序號是(

A.1)(3B.1)(3)(4C.1)(2)(3D.2)(4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機構在某地區(qū)隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.

1從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;

2從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查某大學學生的某天上網(wǎng)的時間,隨機對名男生和名女生進行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結果:

1:男生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)

人數(shù)

2:女生上網(wǎng)時間與頻數(shù)分布表

上網(wǎng)時間(分鐘)

人數(shù)

1)用分層抽樣在選取人,再隨機抽取人,求抽取的人都是女生的概率;

2)完成下面的列聯(lián)表,并回答能否有的把握認為“大學生上網(wǎng)時間與性別有關”?

上網(wǎng)時間少于分鐘

上網(wǎng)時間不少于分鐘

合計

男生

女生

合計

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M軸相切.

(1)的值;

(2)求圓M軸上截得的弦長;

(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.

【答案】(1) (2) (3)

【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2),得到關于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點到直線的的距離進行求解.

試題解析:(1)   ∵圓M軸相切  

   

(2) ,則  

 

(3)

 的最小值等于點到直線的距離, 

 

∴四邊形面積的最小值為

型】解答
束】
20

【題目】在平面直角坐標系中,圓的方程為,且圓軸交于 兩點,設直線的方程為

(1)當直線與圓相切時,求直線的方程;

(2)已知直線與圓相交于, 兩點.

(。┤,求實數(shù)的取值范圍;

(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為 , ,

是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是衡量空氣污染程度的一個指標,為了了解市空氣質(zhì)量情況,從年每天的值的數(shù)據(jù)中隨機抽取天的數(shù)據(jù),其頻率分布直方圖如圖所示.將值劃分成區(qū)間、、,分別稱為一級、二級、三級和四級,統(tǒng)計時用頻率估計概率 .

(1)根據(jù)年的數(shù)據(jù)估計該市在年中空氣質(zhì)量為一級的天數(shù);

(2)按照分層抽樣的方法,從樣本二級、三級、四級中抽取天的數(shù)據(jù),再從這個數(shù)據(jù)中隨機抽取個,求僅有二級天氣的概率.

查看答案和解析>>

同步練習冊答案