(2007•揭陽(yáng)二模)已知函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對(duì)稱,則函數(shù)y=g(x)的解析式為(  )
分析:根據(jù)函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對(duì)稱可知,函數(shù)y=g(x)是y=f(x)的反函數(shù),由此可得y=g(x)的解析式.
解答:解:函數(shù)f(x)=logax(a>0,a≠1)的圖象如右圖示,
∴l(xiāng)oga2=-1,a=
1
2
,∴f(x)=log 
1
2
x.
函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對(duì)稱,
所以y=g(x)是y=f(x)的反函數(shù),即g(x)=(
1
2
)x
,
故選B.
點(diǎn)評(píng):本題屬于基礎(chǔ)性題,解題思路清晰,方向明確,注意抓住函數(shù)y=g(x)的圖象與y=f(x)的圖象關(guān)于直線y=x對(duì)稱這一特點(diǎn),確認(rèn)f(x)是原函數(shù)的反函數(shù)非常重要,是本題解決的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱函數(shù)f(x)在D上有下界,其中A稱為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)  

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱為在D上有上界.請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)若函數(shù)f(x)在D上既有上界又有下界,則稱函數(shù)f(x)在D上有界,函數(shù)f(x)叫做有界函數(shù).試探究函數(shù)f(x)=ax3+
b
x
(a>0,b>0a,b是常數(shù))是否是[m,n](m>0,n>0,m、n是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)下圖是用同樣規(guī)格的黑、白兩色正方形瓷磚鋪設(shè)的若干圖案,則按此規(guī)律第n個(gè)圖案中需用黑色瓷磚
4n+8
4n+8
塊.(用含n的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)已知點(diǎn)P(x,y)的坐標(biāo)滿足條件
x+y≤4
y≥x
x≥1.
則x2+y2的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)某地區(qū)的一種特色水果上市時(shí)間僅能持續(xù)幾個(gè)月,預(yù)測(cè)上市初期和后期會(huì)因供不應(yīng)求使價(jià)格呈連續(xù)上漲的態(tài)勢(shì),而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌,為準(zhǔn)確研究其價(jià)格走勢(shì),下面給出的四個(gè)價(jià)格模擬函數(shù)中合適的是(其中p,q為常數(shù),且q>1,x∈[0,5],x=0表示4月1日,x=1表示5月1日,…以此類推)( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案