【題目】已知函數(shù)f(x)=log2(x+a).
(Ⅰ)當a=1時,若f(x)+f(x-1)>0成立,求x的取值范圍;
(Ⅱ)若定義在R上奇函數(shù)g(x)滿足g(x+2)=-g(x),且當0≤x≤1時,g(x)=f(x),求g(x)在[-3,-1]上的解析式,并寫出g(x)在[-3,3]上的單調(diào)區(qū)間(不必證明);
(Ⅲ)對于(Ⅱ)中的g(x),若關(guān)于x的不等式g()≥g(-)在R上恒成立,求實數(shù)t的取值范圍.
【答案】(I);(II)見解析;(III).
【解析】
(Ⅰ)當時,可化為,解不等式組可得答案
(II)根據(jù)已知可得,在結(jié)合條件求得的解析式,進而分析出在上的單調(diào)區(qū)間
(III)關(guān)于的不等式在上恒成立,即,分類討論后,綜合討論結(jié)果,可得答案
解:(Ⅰ)當a=1時,f(x)=log2(x+1).
∴f(x-1)=log2x,
∴f(x)+f(x-1)=log2(x+1)+log2x=log2[x(x+1)],
若f(x)+f(x-1)>0,則,
解得:x∈(,+∞),
即x的取值范圍為(,+∞);
(Ⅱ)∵函數(shù)g(x)是定義在R上奇函數(shù),
故g(0)=0,
又∵當0≤x≤1時,g(x)=f(x)=log2(x+a).
故a=1,
當x∈[-2,-1]時,x+2∈[0,1],
∴g(x)=-g(x+2)=-log2(x+3).
當x∈[-3,-2]時,x+2∈[-1,0],-(x+2)∈[0,1],
∴g(x)=-g(x+2)=g[-(x+2)]=log2[-(x+2)+1]=log2(-x-1).
故g(x)=,
g(x)在[-3,-1]和[1,3]上遞減,在[-1,1]上遞增;
(III)記u==-+,
當t+1≥0時,u∈(-,-+)=(-,),
由g()≥g(-)在R上恒成立可得:(-,)[,],
解得:t∈[-1,20].
當t+1<0時,u∈(-+,-)=(,-),
由g()≥g(-)在R上恒成立可得:(,-)[.],
解得:t∈[-4,-1).
綜上所述實數(shù)t的取值范圍為[-4,20].
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx﹣ )(ω>0)的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于點( ,0)對稱
B.函數(shù)f(x)的圖象關(guān)于直線x= 對稱
C.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞減
D.函數(shù)f(x)的圖象在( ,π)上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,準備在墻上釘一個支架,支架由兩直桿AC與BD 焊接而成,焊接點 D 把桿AC 分成 AD, CD 兩段,其中兩固定點A,B 間距離為1 米,AB 與桿 AC 的夾角為60 ,桿AC 長為 1 米,若制作 AD 段的成本為a 元/米,制作 CD 段的成本是 2a 元/米,制作桿BD 成本是 3a 元/米. 設 ADB ,則制作整個支架的總成本記為 S 元.
(1)求S關(guān)于 的函數(shù)表達式,并求出的取值范圍;
(2)問 段多長時,S最?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的右頂點A(2,0),且過點
(1)求橢圓C的方程;
(2)過點B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于M,N兩點,線段MN的中點為P,記直線PB的斜率為k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中.
(I)求證:AC⊥BD1;
(Ⅱ)是否存在直線與直線AA1,CC1,BD1都相交?若存在,請你在圖中畫出兩條滿足條件的直線(不必說明畫法及理由);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2-ax+a2-13=0},B={x|x2-4x+3=0},C={x|x2—3x=0}.
(1)若A∩B=AB,求a的值;
(2)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,已知a≠b,cos2A﹣cos2B= sinAcosA﹣ sinBcosB. (Ⅰ)求角C的大;
(Ⅱ)若c= ,siniA= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意,都有.
(1)若函數(shù)的頂點坐標為且,求的解析式;
(2)函數(shù)的最小值記為,求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設Sn為數(shù)列{ }的前n項和,求證:1≤Sn<4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com