【題目】在正方形SG1G2G3中,E、F分別是G1G2及G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)在沿SE、SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1、G2、G3三點(diǎn)重合,重合后的點(diǎn)記為G,那么,在四面體S﹣EFG中必有( )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面
【答案】A
【解析】
在正方形SG1G2G3中,有S G1⊥G1E,在折疊后其垂直關(guān)系不變,所以有SG⊥EG.同理有有SG⊥FG,再由線(xiàn)面垂直的判定定理證明.
在正方形SG1G2G3中,
因?yàn)?/span>S G1⊥G1E,
所以在四面體中有SG⊥EG.
又因?yàn)?/span>S G3⊥G3F,
所以在四面體中有SG⊥FG,且,
所以 SG⊥△EFG所在平面.
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(a+b﹣c)(sinA+sinB+sinC)=bsinA.
(1)求C;
(2)若a=2,c=5,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(1)當(dāng)為自然對(duì)數(shù)的底數(shù)時(shí),求的極小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意,恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓>>0,稱(chēng)圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn),使得與橢圓都只有一個(gè)交點(diǎn).求證:⊥.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半正多面體(semiregular solid) 亦稱(chēng)“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長(zhǎng)為1的正方形,粗線(xiàn)部分是某二十四等邊體的三視圖,則該幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)研究函數(shù)f(x)在(0,π)上的單調(diào)性;
(2)求函數(shù)g(x)=x2+πcosx的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年12月以來(lái),湖北武漢市發(fā)現(xiàn)多起病毒性肺炎病例,并迅速在全國(guó)范圍內(nèi)開(kāi)始傳播,專(zhuān)家組認(rèn)為,本次病毒性肺炎病例的病原體初步判定為新型冠狀病毒,該病毒存在人與人之間的傳染,可以通過(guò)與患者的密切接觸進(jìn)行傳染.我們把與患者有過(guò)密切接觸的人群稱(chēng)為密切接觸者,每位密切接觸者被感染后即被稱(chēng)為患者.已知每位密切接觸者在接觸一個(gè)患者后被感染的概率為,某位患者在隔離之前,每天有位密切接觸者,其中被感染的人數(shù)為,假設(shè)每位密切接觸者不再接觸其他患者.
(1)求一天內(nèi)被感染人數(shù)為的概率與、的關(guān)系式和的數(shù)學(xué)期望;
(2)該病毒在進(jìn)入人體后有14天的潛伏期,在這14天的潛伏期內(nèi)患者無(wú)任何癥狀,為病毒傳播的最佳時(shí)間,設(shè)每位患者在被感染后的第二天又有位密切接觸者,從某一名患者被感染,按第1天算起,第天新增患者的數(shù)學(xué)期望記為.
(i)求數(shù)列的通項(xiàng)公式,并證明數(shù)列為等比數(shù)列;
(ii)若戴口罩能降低每位密切接觸者患病概率,降低后的患病概率,當(dāng)取最大值時(shí),計(jì)算此時(shí)所對(duì)應(yīng)的值和此時(shí)對(duì)應(yīng)的值,根據(jù)計(jì)算結(jié)果說(shuō)明戴口罩的必要性.(取)
(結(jié)果保留整數(shù),參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),以軸正半軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)系方程為.
(1)寫(xiě)出直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省新高考將實(shí)行“”模式,“3”為全國(guó)統(tǒng)考科目語(yǔ)文數(shù)學(xué)外語(yǔ),所有學(xué)生必考;“1”為首選科目,考生須在物理歷史兩科中選擇一科;“2”為再選科目,考生可在化學(xué)生物思想政治地理4個(gè)科目中選擇兩科.某考生已經(jīng)確定“首選科目”為物理,如果他從“再選科目”中隨機(jī)選擇兩科,則思想政治被選中的概率為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com