【題目】在一個口袋中裝有5個黑球和3個白球,這些球除顏色外完全相同,從中摸出3個球,則摸出白球的個數(shù)多于黑球個數(shù)的概率為

A.B.

C.D.

【答案】C

【解析】

由在一個口袋中裝有5個黑球和3個白球,這些球除顏色外完全相同知本題是一個古典概型,試驗的總事件是從8個球中取3個球有種取法,從中摸出3個球,摸出白球的個數(shù)多于黑球個數(shù),包括摸到2個白球,或摸到3個白球有種不同的取法,根據(jù)古典概型公式得到結(jié)果.

解:由題意知本題是一個古典概型,

在一個口袋中裝有5個黑球和3個白球,這些球除顏色外完全相同.

試驗的總事件是從8個球中取3個球有種取法,

摸出白球的個數(shù)多于黑球個數(shù),包括摸到2個白球,或摸到3個白球有種不同的取法,

摸出白球的個數(shù)多于黑球個數(shù)的概率等于,

故選:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.

求直線的斜率;

Ⅱ)若點分別為曲線,上的動點,當取最大值時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,離心率為,過點且斜率為的直線與橢圓交于點軸交于點.

(1)求橢圓的方程;

(2)設(shè)點的中點.

(i)若軸上存在點,對于任意的,都有為原點),求出點的坐標;

(ii)射線為原點)與橢圓交于點,滿足,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校用簡單隨機抽樣方法抽取了30名同學,對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:

若將月均課外閱讀時間不低于30小時的學生稱為“讀書迷”.

(1)將頻率視為概率,估計該校900名學生中“讀書迷”有多少人?

(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.

(i)共有多少種不同的抽取方法?

(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)在其定義域上恰有兩個零點,則正實數(shù)a的值為_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是自然數(shù)的底數(shù),.

1)當時,解不等式;

2)若上是單調(diào)增函數(shù),求的取值范圍;

3)當時,求整數(shù)的所有值,使方程上有解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):

季度

季度編號x

銷售額y(百萬元)

1)公司市場部從中任選個季度的數(shù)據(jù)進行對比分析,求這個季度的銷售額都超過千萬元的概率;

2)求關(guān)于的線性回歸方程,并預測該公司的銷售額.

附:線性回歸方程:其中

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次抽獎活動中,有,,,6人獲得抽獎機會,抽獎規(guī)則如下:若獲一等獎后不再參加抽獎,獲得二等獎的仍參加三等獎抽獎.現(xiàn)在主辦方先從6人中隨機抽取2人均獲一等獎,再從余下的4人中隨機抽取1人獲二等獎,最后還從這4人中隨機抽取1人獲三等獎.

1)求能獲一等獎的概率;

2)若已獲一等獎,求能獲獎的概率.

查看答案和解析>>

同步練習冊答案