【題目】已知點(diǎn)A(0,1),拋物線C:y2=ax(a>0)的焦點(diǎn)為F,連接FA,與拋物線C相交于點(diǎn)M,延長(zhǎng)FA,與拋物線C的準(zhǔn)線相交于點(diǎn)N,若|FM|:|MN|=1:2,則實(shí)數(shù)a的值為_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在定義域內(nèi)是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
若函數(shù)有兩個(gè)極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝中華人民共和國(guó)成立70周年,某公司舉行大型抽獎(jiǎng)活動(dòng),活動(dòng)中準(zhǔn)備了一枚質(zhì)地均勻的正十二面體的骰子,在其十二個(gè)面上分別標(biāo)有數(shù)字1,2,3,…,12,每位員工均有一次參與機(jī)會(huì),并規(guī)定:若第一次拋得向上面的點(diǎn)數(shù)為完全平方數(shù)(即能寫成整數(shù)的平方形式,如),則立即視為獲得大獎(jiǎng);若第一次拋得向上面的點(diǎn)數(shù)不是完全平方數(shù),則需進(jìn)行第二次拋擲,兩次拋得的點(diǎn)數(shù)和為完全平方數(shù)(如),也可視為獲得大獎(jiǎng).否則,只能獲得安慰獎(jiǎng).
(1)試列舉須拋擲兩次才能獲得大獎(jiǎng)的所有可能情況(用表示前后兩次拋得的點(diǎn)數(shù)),并說明所有可能情況的總數(shù);
(2)若獲得大獎(jiǎng)的獎(jiǎng)金(單位:元)為拋得的點(diǎn)數(shù)或點(diǎn)數(shù)和(完全平方數(shù))的360倍,而安慰獎(jiǎng)的獎(jiǎng)金為48元,該公司某位員工獲得的獎(jiǎng)金為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)討論f(x)的單調(diào)性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我們的教材必修一中有這樣一個(gè)問題,假設(shè)你有一筆資金,現(xiàn)有三種投資方案供你選擇,這三種方案的回報(bào)如下:
方案一:每天回報(bào)元;
方案二:第一天回報(bào)元,以后每天比前一天多回報(bào)元;
方案三:第一天回報(bào)元,以后每天的回報(bào)比前一天翻一番.
記三種方案第天的回報(bào)分別為,,.
(1)根據(jù)數(shù)列的定義判斷數(shù)列,,的類型,并據(jù)此寫出三個(gè)數(shù)列的通項(xiàng)公式;
(2)小王準(zhǔn)備做一個(gè)為期十天的短期投資,他應(yīng)該選擇哪一種投資方案?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在極坐標(biāo)系中,點(diǎn),,是線段的中點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位,建立平面直角坐標(biāo)系,曲線的參數(shù)方程是(為參數(shù)).
(1)求點(diǎn)的直角坐標(biāo),并求曲線的普通方程;
(2)設(shè)直線過點(diǎn)交曲線于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com