【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.
【答案】
(1)解:∵直線l的參數(shù)方程為 (t為參數(shù)),
∴直線l的普通方程:x﹣y﹣1=0,
∵曲線C的極坐標方程為 ρsinθtanθ=2a(a>0),
∴ρ2sin2θ=2aρcosθ(a>0),
∴曲線C的普通方程:y2=2ax
(2)解:∵y2=2ax;
∴x≥0,
設(shè)直線l上點M、N對應(yīng)的參數(shù)分別為t1,t2,(t1>0,t2>0),
則|PM|=t1,|PN|=t2,
∵|PM|=|MN|,
∴|PM|= |PN|,
∴t2=2t1,
將 (t為參數(shù)),代入y2=2ax得
t2﹣2 (a+2)t+4(a+2)=0,
∴t1+t2=2 (a+2),
t1t2=4(a+2),
∵t2=2t1,
∴a=
【解析】(1)利用同角的平方關(guān)系以及極坐標方程和直角坐標的互化公式求解;(2)結(jié)合直線的參數(shù)方程中參數(shù)的幾何意義和二次方程的韋達定理,求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),曲線通過點,且在點處的切線垂直于軸.
(1)用分別表示和;
(2)當取得最小值時,求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導函數(shù),其導函數(shù)為f′(x),且有xf′(x)>x2+3f(x),則不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集為( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù),為常數(shù)).
()若函數(shù),在區(qū)間上單調(diào)遞減,求的取值范圍.
()當時,判斷函數(shù)在上是否有零點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出(萬元)與銷售(萬元)之間有如下的對應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
若由資料可知對呈線性相關(guān)關(guān)系,試求:
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)據(jù)此估計廣告費用支出為10萬元時銷售收入的值.
(參考公式: ,.)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)關(guān)于 x 的函數(shù)f(x)=lg(x2﹣2x﹣3)的定義域為集合 A,函數(shù) g(x)=x﹣a,(0≤x≤4)的值域為集合 B.
(1)求集合 A,B;
(2)若集合 A,B 滿足 A∩B=B,求實數(shù) a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點M(x,y)到直線l:x=3的距離是它到點D(1,0)的距離的 倍.
(1)求動點M的軌跡C的方程;
(2)設(shè)軌跡C上一動點T滿足: =2λ +3μ ,其中P、Q是軌跡C上的點,且直線OP與OQ的斜率之積為﹣ .若N(λ,μ)為一動點,F(xiàn)1(﹣ ,0)、F2( ,0)為兩定點,求|NF1|+|NF2|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標準分別是500元/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元
A.72B.80C.84D.90
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com