設(shè)的導(dǎo)數(shù)滿(mǎn)足,其中.
求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
設(shè),求函數(shù)的極值.
(I)
(II)函數(shù)處取得極小值處取得極大值
解析試題分析:(I)因故
令由已知
又令由已知因此解得因此
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/43/5/1du7t2.png" style="vertical-align:middle;" />故曲線(xiàn)處的切線(xiàn)方程為
(II)由(I)知,從而有
令
當(dāng)上為減函數(shù);
當(dāng)在(0,3)上為增函數(shù);
當(dāng)時(shí),上為減函數(shù);
從而函數(shù)處取得極小值處取得極大值
考點(diǎn):導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的極值。
點(diǎn)評(píng):典型題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。求函數(shù)的極值問(wèn)題,基本步驟是“求導(dǎo)數(shù)、求駐點(diǎn)、研究單調(diào)性、求極值”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)若a=-1,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖象在點(diǎn)(2,f(2))處的切線(xiàn)的傾斜角為45o,對(duì)于任意的t [1,2],函數(shù)是的導(dǎo)函數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) 且.
(Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)求函數(shù)的圖像在處的切線(xiàn)方程;
(Ⅱ)設(shè)實(shí)數(shù),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)函數(shù)是否存在極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,其中是自然常數(shù),
(1)討論時(shí), 的單調(diào)性、極值;
(2)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù),其中為常數(shù),且函數(shù)和
的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線(xiàn)互相平行,求此時(shí)平行線(xiàn)的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com