【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱強軍利刃”“強國之盾,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為(

A.B.C.D.

【答案】C

【解析】

至少有2位關(guān)注此次大閱兵的對立事件為恰有2位不關(guān)注此次大閱兵,根據(jù)對立事件的概率公式計算概率.

解:從這10位外國人中任意選取3位做一次采訪,其結(jié)果為個,

恰有2位不關(guān)注此次大閱兵有個,

則至少有2位關(guān)注大閱兵的概率.

故選:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下述四個結(jié)論:

①若內(nèi)單調(diào)遞增,則.

②若內(nèi)單調(diào)遞減,則.

③若內(nèi)有且僅有一個極大值點,則.

④若內(nèi)有且僅有一個極小值點,則.

其中所有正確結(jié)論的序號是(

A.①③B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周率π是數(shù)學(xué)中一個非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對π進行了估算.現(xiàn)利用下列實驗我們也可對圓周率進行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機寫出一對小于1的正實數(shù)a,b,再統(tǒng)計出a,b1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識,則可估計出π的值是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo),直線經(jīng)過點,且傾斜角為.

1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;

2)直線與曲線交于兩點,直線的參數(shù)方程為t為參數(shù)),直線與曲線交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx3,gx)=alnx2xaR.

1)討論gx)的單調(diào)性;

2)是否存在實數(shù)a,使不等式fxgx)恒成立?如果存在,求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市有東西南北四個進入城區(qū)主干道的人口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內(nèi)的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設(shè)每個入口是否發(fā)生擁堵相互獨立,將各入口在這30天內(nèi)擁堵的頻率代替各入口每天擁堵的概率.

(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.

(2)各入口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為m(,且).方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調(diào)派兩位交通協(xié)管員協(xié)助疏通交通,調(diào)派后當(dāng)日需給每位交通協(xié)管員的費用為200.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學(xué)期望為依據(jù),你認為在這兩個方案中應(yīng)該如何選擇?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且asinB=bsin(A+).

(1)求A;

(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面為正方形,為正三角形,的中點,過的平面平行于平面,且平面與平面的交線為,與平面的交線為

1)在圖中作出四邊形(不必說出作法和理由);

2)若,四棱錐的體積為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求的單調(diào)區(qū)間;

)若都屬于區(qū)間,,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案