直角坐標(biāo)平面上,為原點,為動點,,. 過點軸于,過軸于點,. 記點的軌跡為曲線
、,過點作直線交曲線于兩個不同的點、(點之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.

(1)  (2)不存在直線l,使得|BP|=|BQ|

解析試題分析:(Ⅰ)設(shè)點T的坐標(biāo)為,點M的坐標(biāo)為,則M1的坐標(biāo)為(0,),
,于是點N的坐標(biāo)為,N1的坐標(biāo)
,所以   

由此得   

即所求的方程表示的曲線C是橢圓.       
(Ⅱ)點A(5,0)在曲線C即橢圓的外部,當(dāng)直線l的斜率不存在時,直線l與橢圓C
無交點,所以直線l斜率存在,并設(shè)為k. 直線l的方程為    
由方程組
依題意   
當(dāng)時,設(shè)交點PQ的中點為,

 
     

不可能成立,所以不存在直線l,使得|BP|=|BQ|.  
考點:橢圓的標(biāo)準(zhǔn)方程;直線與圓錐曲線的綜合問題.
點評:本題主要考查了橢圓的標(biāo)準(zhǔn)方程和橢圓與直線的關(guān)系.當(dāng)涉及直線與圓錐曲線的位置關(guān)系時,常需要把直線方程與圓錐曲線的方程聯(lián)立,借助韋達(dá)定理求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直接坐標(biāo)系xOy中,直線L的方程為x-y+4=0,曲線C的參數(shù)方程為.
(1)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,),判斷點P與直線L的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線l:x=my+1過橢圓的右焦點F,拋物線:的焦點為橢圓C的上頂點,且直線l交橢圓C于A、B兩點,點A、F、B在直線g:x=4上的射影依次為點D、K、E.(1)橢圓C的方程;(2)直線l交y軸于點M,且,當(dāng)m變化時,探求λ12的值是否為定值?若是,求出λ12的值,否則,說明理由;(3)接AE、BD,試證明當(dāng)m變化時,直線AE與BD相交于定點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A,B兩點在拋物線C:x2=4y上,點M(0,4)滿足=λ.
(1)求證:;
(2)設(shè)拋物線C過A、B兩點的切線交于點N.
(ⅰ)求證:點N在一條定直線上;    
(ⅱ)設(shè)4≤λ≤9,求直線MN在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

Δ兩個頂點的坐標(biāo)分別是,邊所在直線的斜率之積等于,求頂點的軌跡方程,并畫出草圖。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線,上任意一點;
(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);
(2)設(shè)點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點,焦點在坐標(biāo)軸上的橢圓的方程為它的離心率為,一個焦點是(-1,0),過直線上一點引橢圓的兩條切線,切點分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點處的切線方程是.求證:直線AB恒過定點C,并求出定點C的坐標(biāo);
(3)是否存在實數(shù),使得求證: (點C為直線AB恒過的定點).若存在,請求出,若不存在請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積. 
 
(2)過直角坐標(biāo)平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點. 用表示A,B之間的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知直線經(jīng)過橢圓的左頂點A和上頂點D,橢圓的右頂點為,點和橢圓上位于軸上方的動點,直線,與直線分別交于兩點。

(I)求橢圓的方程;
(Ⅱ)求線段MN的長度的最小值;
(Ⅲ)當(dāng)線段MN的長度最小時,在橢圓上是否存在這
樣的點,使得的面積為?若存在,確定點的個數(shù),若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案