【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求的解析式;
(2)試判斷的單調性,并用定義法證明;
(3)若存在,使得不等式成立,求實數(shù)的取值范圍.
【答案】(1);(2)在上單調遞增,證明見解析;(3).
【解析】
(1)根據(jù)題意,得到,求出,即可得出結果;
(2)根據(jù)題意得到,任取,且,作差法比較,,根據(jù)函數(shù)單調性的概念,即可得出結果;
(3)先由函數(shù)奇偶性與單調性得到存在,使得成立,推出存在,使得成立;令,求出其最小值,即可得出結果.
(1)由題意可得,解得,
故;
(2),可得在上單調遞增,
任取,且,,
∵∴即,
又,,∴即,
故在上單調遞增.
(3),
因為是奇函數(shù),所以,
由(2)可知在上單調遞增,
所以存在,使得成立,
即存在,使得成立;
令,,
易得其在上單調遞增;
所以;
故,
所以k的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】
已知拋物線,過點的直線與拋物線交于、兩點,且直線與軸交于點.(1)求證:,,成等比數(shù)列;
(2)設,,試問是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)
(1)若等邊邊長為,,試寫出關于的函數(shù)關系;
(2)問為多少時,四邊形的面積最大?這個最大面積為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當.
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調區(qū)間;
(Ⅲ)若關于的方程有三個不同的解,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)A種型號的電腦.2013年平均每臺電腦的生產(chǎn)成本為5000元,并按純利潤為20%定出廠價,2014年開始,公司更新設備,加強管理,逐步推行股份制,從而使生產(chǎn)成本逐年降低,2017年平均每臺A種型號的電腦出廠價僅是2013年的80%,實現(xiàn)了純利潤50%.
(1)求2017年每臺A種型號電腦的生產(chǎn)成本;
(2)以2013年的生產(chǎn)成本為基數(shù),用二分法求2013-2017年間平均每年生產(chǎn)成本降低的百分率(精確度001).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)令,將函數(shù)的圖像向左平移個單位,再向上平移1個單位,得到函數(shù),求函數(shù)的解析式;
(2)若在上單調遞增,求的取值范圍;
(3)在(1)的條件下的函數(shù)的圖像,區(qū)間且滿足:在上至少含有30個零點,在所有滿足上述條件的中,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com