精英家教網 > 高中數學 > 題目詳情

【題目】下列說法正確的是( )

A.若散點圖中的樣本點散布在從左下角到右上角的區(qū)域,則散點圖中的兩個變量的相關關系為負相關

B.殘差平方和越小的模型,擬合的效果越好

C.用相關指數來刻畫回歸效果,的值越小,說明模型的擬合效果越好

D.線性相關系數越大,兩個變量的線性相關性越強;反之,線性相關性越弱

【答案】B

【解析】

利用兩個變量的正負相關關系即可判斷選項A是否正確;根據殘差平方和的概念即可判斷選項B是否正確;根據關指數的大小和模型的擬合關系進行判斷,即可判斷選項C是否正確;根據線性相關系數與相關性的關系進行判斷,即可判斷選項D是否正確.

若散點圖中的樣本點散布在從左下角到右上角的區(qū)域,則散點圖中的兩個變量的相關關系為正相關,故選項A錯誤;

殘差平方和越小的模型,擬合效果越好,故選項B正確;

用相關指數來刻畫回歸效果,的值越接近1,說明模型的擬合效果越好,故選項C錯誤;

根據線性相關系數的絕對值越接近1,兩個變量的線性相關性越強;反之,線性相關性越弱;故D錯誤;

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線和⊙,過拋物線C上一點)做兩條直線與⊙相切于兩點,分別交拋物線于兩點.

1)當的角平分線垂直軸時,求直線的斜率;

2)若直線軸上的截距為,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角中,角的對邊分別為.

(1)求角的大;

(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,.

1)請用角表示清潔棒的長;

2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形且,側面為等邊三角形,且平面平面.

1)求平面與平面所成的銳二面角的大小;

2)若,且直線與平面所成角為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程是是參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,其傾斜角為

)證明直線恒過定點,并寫出直線的參數方程;

)在()的條件下,若直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.

已知等差數列的公差為,等差數列的公差為.分別是數列的前項和,且 ,

1)求數列的通項公式;

2)設,求數列的前項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,

1若展開式中第5項,第6項與第7項的二項式系數成等差數列,求展開式中二項式系數最大項

的系數;

2若展開式前三項的二項式系數和等于79,求展開式中系數最大的項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C的極坐標方程為.

1)求直線l的普通方程和圓C的直角坐標方程;

2)直線l與圓C交于A,B兩點,點P(2,1),求|PA||PB|的值.

查看答案和解析>>

同步練習冊答案