【題目】如圖,在四棱錐中, 底面, , .

1)求直線所成角的大;

(2)證明: .

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)取PD中點(diǎn)M,連結(jié)EM,AM.推導(dǎo)出四邊形ABEM為平行四邊形,從而BEAM,進(jìn)而MAD為異面直線BE與AD所成角(或補(bǔ)角),由此能求出異面直線BE與AD所成角.

(2)推導(dǎo)出PA⊥CD,CD⊥DA,從而CD平面PAD,進(jìn)而CDAM,再由BEAM,能證明BE⊥CD.

試題解析:

1)如圖,取中點(diǎn)連結(jié),

由于分別為的中點(diǎn),故,

,

四邊形為平行四邊形,,

為異面直線所成角(或補(bǔ)角),

中,,,

異面直線所成角為.

2)證明:底面,,

,平面

平面,

又由(1)得,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 ,圓

(1)求證:直線與圓總相交;

(2)求出相交的弦長的最小值及相應(yīng)的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐A﹣BCDE中,AB⊥平面BCDE,四邊形BCDE為矩形,F(xiàn)為AC的中點(diǎn),AB=BC=2,BE=

(Ⅰ)證明:EF⊥BD;
(Ⅱ)在線段AE上是否存在一點(diǎn)G,使得二面角D﹣BG﹣E的大小為 ?若存在,求 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為常數(shù).

)若,求的取值范圍.

)若對任意的都有不等式成立,求的值.

)在()的條件下,若函數(shù)的圖像與軸恰有三個相異的公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,an≠0,anan+1=4Sn﹣1.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)證明: + +…+ <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是公差不為零的等差數(shù)列,a1=1,且a1 , a3 , a9成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 令 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理科)已知函數(shù)f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,t∈R.
(1)當(dāng)t≠0時,求f(x)的單調(diào)區(qū)間;
(2)證明:對任意t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)為f(x)的導(dǎo)函數(shù),求g(x)單調(diào)區(qū)間;
(2)已知函數(shù)f(x)在x=1處取得極大值,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB的端點(diǎn)A的坐標(biāo)為,端點(diǎn)B是圓: 上的動點(diǎn).

(1)求過A點(diǎn)且與圓相交時的弦長為的直線的方程。

(2)求線段AB中點(diǎn)M的軌跡方程,并說明它是什么圖形。

查看答案和解析>>

同步練習(xí)冊答案