【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

【答案】I;(II)最大值為,最小值為.

【解析】

試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II關(guān)鍵是處理好關(guān)系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點到定直線的最大值與最小值問題處理.

試題解析:I)曲線C的參數(shù)方程為為參數(shù)).直線的普通方程為

II)曲線C上任意一點的距離為.則

.其中為銳角,且

當(dāng)時,取到最大值,最大值為

當(dāng)時,取到最小值,最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點,,坐標(biāo)分別為,,為線段上一點,直線軸負(fù)半軸交于點,直線交于點。

(1)當(dāng)點坐標(biāo)為時,求直線的方程;

(2)求面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中 .

(1)當(dāng) 時,求函數(shù) 處的切線方程;

(2)若函數(shù) 在定義域上有且僅有一個極值點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長為4的正方形ABCD的邊上有一點P,沿著折線BCDA由點B(起點)向點A(終點)運動.設(shè)點P運動的路程為x,APB的面積為y,yx之間的函數(shù)關(guān)系式用如圖所示的程序框圖給出.

(1)寫出程序框圖中①,,③處應(yīng)填充的式子.

(2)若輸出的面積y值為6,則路程x的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】余江人熱情好客,凡逢喜事,一定要擺上酒宴,請親朋好友、同事高鄰來助興慶賀.歡度佳節(jié),迎親嫁女,喬遷新居,學(xué)業(yè)有成,仕途風(fēng)順,添丁加口,朋友相聚,都要以酒示意,借酒表達(dá)內(nèi)心的歡喜.而凡有酒宴,一定要劃拳,劃拳是余江酒文化的特色.余江人劃拳注重禮節(jié),形式多樣;講究規(guī)矩,蘊含著濃厚的傳統(tǒng)文化和淳樸的民俗特色.在禮節(jié)上,講究“尊老尚賢敬遠(yuǎn)客”一般是東道主自己或委托桌上一位酒量好的劃拳高手來“做關(guān)”,﹣﹣就是依次陪桌上會劃拳的劃一年數(shù)十二拳(也有半年數(shù)六拳).十二拳之后晚輩還要敬長輩一杯酒. 再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他還要敬他叔叔一杯,規(guī)則如下:前兩拳只有小明猜贏叔叔,叔叔才會喝下這杯敬酒,且小明也要陪喝,如果第一拳小明沒猜到,則小明喝下第一杯酒,繼續(xù)猜第二拳,沒猜到繼續(xù)喝第二杯,但第三拳不管誰贏雙方同飲自己杯中酒,假設(shè)小明每拳贏叔叔的概率為 ,問在敬酒這環(huán)節(jié)小明喝酒三杯的概率是多少(
(猜拳只是一種娛樂,喝酒千萬不要過量。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的軌跡E
(2)過軌跡E上任意一點P作圓O:x2+y2=3的切線l1 , l2 , 設(shè)直線OP,l1 , l2的斜率分別是k0 , k1 , k2 , 試問在三個斜率都存在且不為0的條件下, + )是否是定值,請說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個單調(diào)遞減區(qū)間是(
A.[ , ]
B.[﹣ ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對x∈[0,+∞),y∈[0,+∞),不等式ex+y2+exy2+2﹣4ax≥0恒成立,則實數(shù)a取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣e(x+1)lna﹣ (a>0,且a≠1),e為自然對數(shù)的底數(shù).
(1)當(dāng)a=e時,求函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值
(2)若函數(shù)f(x)只有一個零點,求a的值.

查看答案和解析>>

同步練習(xí)冊答案