【題目】已知在( n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).

【答案】
(1)解:根據(jù)題意,可得( n的展開式的通項(xiàng)為 = ,

又由第6項(xiàng)為常數(shù)項(xiàng),則當(dāng)r=5時(shí), ,

=0,解可得n=10


(2)解:由(1)可得,Tr+1=(﹣ rC10r

,可得r=2,

所以含x2項(xiàng)的系數(shù)為


(3)解:由(1)可得,Tr+1=(﹣ rC10r

若Tr+1為有理項(xiàng),則有 ,且0≤r≤10,

分析可得當(dāng)r=2,5,8時(shí), 為整數(shù),

則展開式中的有理項(xiàng)分別為


【解析】(1)由二項(xiàng)式定理,可得( n的展開式的通項(xiàng),又由題意,可得當(dāng)r=5時(shí),x的指數(shù)為0,即 ,解可得n的值,(2)由(1)可得,其通項(xiàng)為Tr+1=(﹣ rC10r ,令x的指數(shù)為2,可得 ,解可得r的值,將其代入通項(xiàng)即可得答案;(3)由(1)可得,其通項(xiàng)為Tr+1=(﹣ rC10r ,令x的指數(shù)為整數(shù),可得當(dāng)r=2,5,8時(shí),是有理項(xiàng),代入通項(xiàng)可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)勻速旋轉(zhuǎn)的摩天輪每12分鐘轉(zhuǎn)一周,最低點(diǎn)距地面2米,最高點(diǎn)距地面18米,P是摩天輪輪周上一定點(diǎn),從P在最低點(diǎn)時(shí)開始計(jì)時(shí),則14分鐘后P點(diǎn)距地面的高度是米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線圖如下:

I)已知該校有名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足小時(shí)的人數(shù).

II)若從學(xué)習(xí)時(shí)間不少于小時(shí)的學(xué)生中選取人,設(shè)選到的男生人數(shù)為,求隨機(jī)變量的分布列.

III)試比較男生學(xué)習(xí)時(shí)間的方差與女生學(xué)習(xí)時(shí)間方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 <β<α< ,cos(α﹣β)= ,sin(α+β)=﹣ ,則sin2α的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間 上的最小值,并求使y=f(x)取得最小值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足

(1)證明數(shù)列是等比數(shù)列;

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), 是橢圓上的兩點(diǎn),橢圓的離心率為,短軸長為2,已知向量, ,且, 為坐標(biāo)原點(diǎn).

(1)若直線過橢圓的焦點(diǎn),( 為半焦距),求直線的斜率的值;

(2)試問: 的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心C在x軸上,且圓C與直線 相切于點(diǎn)
(1)求n的值及圓C的方程;
(2)若圓M: 與圓C相切,求直線 截圓M所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷f(x)在(0,+∞)的單調(diào)性;
(2)若x>0,證明:(ex﹣1)ln(x+1)>x2

查看答案和解析>>

同步練習(xí)冊(cè)答案