【題目】重慶一中為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)隊(duì)的得分高于隊(duì)的得分的概率為( )
A. B. C. D.
【答案】A
【解析】分析:分三種情況求解:即A隊(duì)5分B隊(duì)0分;A隊(duì)4分B隊(duì)1分;A隊(duì)3分B隊(duì)2分,然后根據(jù)互斥事件的概率公式可得所求.
詳解:(1)A隊(duì)5分B隊(duì)0分,即A隊(duì)四局全勝,概率為.
(2)A隊(duì)4分B隊(duì)1分,即A隊(duì)一、二、四局中敗1局,第3局勝,
其概率為.
(3)A隊(duì)3分B隊(duì)2分,包括兩種情況:①A隊(duì)第3局?jǐn),其余各局勝?/span>②A隊(duì)第一、二、四局中勝1局,第3局勝.
其概率為.
由互斥事件的概率加法公式可得所求概率為.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中裝有一些大小相同的小球,其中號(hào)數(shù)為1的小球1個(gè),號(hào)數(shù)為2的小球2個(gè),號(hào)數(shù)為3的小球3個(gè),…,號(hào)數(shù)為n的小球有n個(gè),從袋中取一球,其號(hào)數(shù)記為隨機(jī)變量,則的數(shù)學(xué)期望E=______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與直線都經(jīng)過(guò)點(diǎn).直線與平行,且與橢圓交于兩點(diǎn),直線與軸分別交于兩點(diǎn).
(1)求橢圓的方程;
(2)證明: 為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各打靶10次,每次打靶所得的環(huán)數(shù)如圖所示.
填寫下表,請(qǐng)從下列角度對(duì)這次結(jié)果進(jìn)行分析.
命中9環(huán)及以上的次數(shù) | 平均數(shù) | 中位數(shù) | 方差 | |
甲 | ||||
乙 |
(1)命中9環(huán)及以上的次數(shù)(分析誰(shuí)的成績(jī)好些);
(2)平均數(shù)和中位數(shù)(分析誰(shuí)的成績(jī)好些);
(3)方差(分析誰(shuí)的成績(jī)更穩(wěn)定);
(4)折線圖上兩人射擊命中環(huán)數(shù)的走勢(shì)(分析誰(shuí)更有潛力).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有個(gè)不同實(shí)數(shù)根,則n的值不可能為( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,函數(shù)f(x)=ex﹣1﹣ax的圖象與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>1時(shí),f(x)>m(x﹣1)lnx,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x,下面結(jié)論中錯(cuò)誤的是( )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關(guān)于x= 對(duì)稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個(gè)單位得到
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),圓的標(biāo)準(zhǔn)方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程;
(2)若射線與的交點(diǎn)為,與圓的交點(diǎn)為,且點(diǎn)恰好為線段的中點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com