【題目】已知f(x)=kx+b的圖象過點(2,1),且b2﹣6b+9≤0
(1)求函數f(x)的解析式;
(2)若a>0,解關于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).
【答案】
(1)解:(1)∵f(x)=kx+b的圖象過點(2,1),且b2﹣6b+9≤0,
∴ ,解得b=3,k=﹣1.
∴f(x)=﹣x+3.
(2)解:∵a>0,x2﹣(a2+a+1)x+a3+3<f(x),
∴﹣x+3>x2﹣(a2+a+1)x+a3+3,
∴x2﹣(a2+a)x+a3<0,
解方程x2﹣(a2+a)x+a3=0,得x1=a, ,
當0<a<1時,原不等式的解集為:{x|a2<x<a};
當a=1時,原不等式的解集為:{x|x≠1};
當a>1時,原不等式的解集為:{x|a<x<a2}
【解析】(1)由已知得 ,由此能求出f(x).(2)原不等式等價于x2﹣(a2+a)x+a3<0,由此能求出關于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).
科目:高中數學 來源: 題型:
【題目】如圖,某幾何體的三視圖中,俯視圖是邊長為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中
.且點為線段的中點, , 現將△沿進行翻折,使得二面角
的大小為,得到圖形如圖(2)所示,連接,點分別在線段上.
(1)證明: ;
(2)若三棱錐的體積為四棱錐體積的,求點到平面的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個周期內的圖象時,列表并填入的部分數據如表:
x | |||||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | ﹣2 |
(1)請將上表數據補全,并直接寫出函數f(x)的解析式;
(2)當x∈[0, ]時,求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點在底面內的射影在線段上,且, , 為的中點, 在線段上,且.
(1)當時,證明:平面平面;
(2)當時,求平面與平面所成的二面角的正弦值及四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的定義域為,如果存在正實數,使得對任意,都有,且恒成立,則稱函數為上的“的型增函數”,已知是定義在上的奇函數,且在時, ,若為上的“2017的型增函數”,則實數的取值范圍是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結果如下
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗次數 |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災害,請根據統(tǒng)計數據:
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮不同地區(qū)的干旱程度,當雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記“甲、乙、丙三地中緩解旱情的個數”為隨機變量,求的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com