已知函數(shù)y=
2-x
2+x
+lg(-x2+4x-3)
的定義域?yàn)镸.
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=a•2x+2+3•4x(a<-3)的最小值.
分析:(1)利用被開方數(shù)非負(fù),真數(shù)大于0,建立不等式組,即可求得函數(shù)的定義域;
(2)換元,利用配方法,結(jié)合函數(shù)的定義域,分類討論,即可求得結(jié)論.
解答:解:(1)由題意,
2-x
2+x
≥0
-x2+4x-3>0
,解得1≤x≤2,∴M=(1,2];
(2)令t=2x(t∈(2,4]),f(x)=g(t)=-4at+3t2=3(t+
2a
3
2-
4a2
3

1°-6<a<-3,即2<-
2a
3
<4時(shí),g(t)min=g(-
2a
3
)=-
4a2
3
;
2°a≤-6,即-
2a
3
≥4時(shí),g(t)min=g(4)=48+16a
∴f(x)min=
48+16a,a≤-6
-
4a2
3
,-6<a<-3
點(diǎn)評:本題考查函數(shù)的定義域,考查函數(shù)的最值,考查配方法的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=log2x•log2(x2)+a•log2x的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=2lo
g
2
2
x+4log2x 
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2-x2+2x+8
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域;
(3)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=
2-x
2+x
+
2x-2
的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=2lo
g22
x+4log2x 
的最大值.

查看答案和解析>>

同步練習(xí)冊答案