【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長(zhǎng)為.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l經(jīng)過點(diǎn),且與圓C相切,求直線l的方程.
【答案】(1)(2)或.
【解析】
(1)設(shè)出圓的半徑,根據(jù)圓的弦長(zhǎng)公式可求出半徑,即可寫出圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)斜率不存在時(shí),檢驗(yàn)是符合;當(dāng)斜率存在時(shí),由點(diǎn)斜式設(shè)出直線方程,根據(jù)直線與圓相切,即可求出斜率,得到直線方程.
(1)根據(jù)題意,設(shè)圓C的方程為,
因?yàn)閳AC被直線截得的弦長(zhǎng)為,圓心到直線的距離為,則,解得.
則圓C的標(biāo)準(zhǔn)方程為.
(2)當(dāng)斜率不存在時(shí),直線的方程為,
顯然圓心到的距離為3,正好等于半徑,符合題意;
當(dāng)斜率存在時(shí),設(shè)斜率為k,則過M點(diǎn)的直線方程為:,
即,圓心到直線的距離等于半徑3,
,解得,
所以直線的方程為.
綜上,所求的直線方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名射擊運(yùn)動(dòng)員分別對(duì)一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:
(1)2人都射中目標(biāo)的概率;
(2)2人中恰有1人射中目標(biāo)的概率;
(3)2人至少有1人射中目標(biāo)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某高校學(xué)生喜歡使用手機(jī)支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計(jì)后作出如圖所示的等高條形圖,則下列說法正確的是( )
A.喜歡使用手機(jī)支付與性別無(wú)關(guān)
B.樣本中男生喜歡使用手機(jī)支付的約
C.樣本中女生喜歡使用手機(jī)支付的人數(shù)比男生多
D.女生比男生喜歡使用手機(jī)支付的可能性大些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),證明:;
(3)試比較與 ,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,平面平面,是邊長(zhǎng)為2的等邊三角形,,.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,與均為等邊三角形,,O為BC的中點(diǎn).
(1)證明:平面平面ABC;
(2)在棱上確定一點(diǎn)M,使得二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),下列說法正確的是( )
A.在處取得極大值
B.有兩個(gè)不同的零點(diǎn)
C.
D.若在恒成立,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn)(),過點(diǎn)任作直線與橢圓相交于, 兩點(diǎn),設(shè)直線, , 的斜率分別為, , , ,試求, 滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知()的方格表中的每個(gè)元素都是絕對(duì)值不大于1的實(shí)數(shù),且方格表中所有元素之和等于0,試求最小的非負(fù)實(shí)數(shù),使得每個(gè)這樣的方格表中必有一行或一列,其元素之和的絕對(duì)值不大于.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com