【題目】如圖,函數(shù)與軸交于兩點(diǎn),點(diǎn)在拋物線上(點(diǎn)在第一象限),∥.記,梯形面積為.
(Ⅰ)求面積以為自變量的函數(shù)解析式;
(Ⅱ)若其中為常數(shù)且,求的最大值.
【答案】(Ⅰ) ;(II)時(shí), 的最大值為; 時(shí), 的最大值為
【解析】試題分析:根據(jù)題意設(shè)點(diǎn)C的橫坐標(biāo)為x,點(diǎn)C在拋物線上,求出點(diǎn)C的縱坐標(biāo),根據(jù)拋物線的對(duì)稱性得出點(diǎn)D的坐標(biāo),利用拋物線方程求出點(diǎn)A、B的坐標(biāo),從而借助梯形面積公式表示面積S,寫出定義域要求;對(duì)函數(shù)求導(dǎo),注意定義域,對(duì)參數(shù)的不同情況進(jìn)行討論,求出面積的最大值.
試題解析:
(Ⅰ)依題意點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為.
點(diǎn)的橫坐標(biāo)滿足方程,解得,
所以.
由點(diǎn)在第一象限,得.
所以關(guān)于的函數(shù)式為 , .
(Ⅱ)記,
令,得
① 若,即時(shí), 與的變化情況如下:
↗ | 極大值 | ↘ |
所以,當(dāng)時(shí), 取得最大值,且最大值為
② 若,即時(shí), 恒成立,
所以, 的最大值為.
綜上, 時(shí), 的最大值為; 時(shí), 的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足: ,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,數(shù)列的前項(xiàng)和為 , 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)當(dāng)時(shí),若,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí), ,
求在上的反函數(shù);
(3)對(duì)于(2)中的,若關(guān)于的不等式在上恒成立,求實(shí)
數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= .
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|﹣1<x<2},當(dāng)實(shí)數(shù)a、b∈(B∩RA)時(shí),證明: |.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線 的左頂點(diǎn)為A,若雙曲線一條漸近線與直線AM平行,則實(shí)數(shù)a等于( )
A.
B.
C.3
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若函數(shù)g(x)=f(x)﹣m有3個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣aln(1+x)(a∈R),g(x)=x2emx(m∈R).
(1)當(dāng)a=1,求函數(shù)f(x)的最大值
(2)當(dāng)a<0,且對(duì)任意實(shí)數(shù)x1 , x2∈[0,2],f(x1)+1≥g(x2)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PD⊥底面ABCD,點(diǎn)M、N分別是棱AB、CD的中點(diǎn).
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點(diǎn)H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請(qǐng)求出H點(diǎn)的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com