【題目】已知點(diǎn)F是拋物線的焦點(diǎn),若點(diǎn)在拋物線C上,且

1)求拋物線C的方程;

2)動(dòng)直線與拋物線C相交于兩點(diǎn),問:在x軸上是否存在定點(diǎn)(其中),使得x軸平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】12)存在,

【解析】

1)根據(jù)焦半徑公式即可求出點(diǎn)的橫坐標(biāo),再根據(jù)點(diǎn)在拋物線C上,即可解出,進(jìn)而得出拋物線C的方程;

2)假設(shè)在x軸上假設(shè)存在定點(diǎn),設(shè)直線DA、DB的斜率分別為,,根據(jù)題意可知,.再聯(lián)立直線方程和拋物線方程,由根與系數(shù)的關(guān)系,得到,代入,即可判斷是否存在滿足題意的值.

拋物線的焦點(diǎn)為,準(zhǔn)線方程為,

即有,即,則,解得,則

x軸上假設(shè)存在定點(diǎn)(其中),因?yàn)?/span>x軸平分,

設(shè),聯(lián)立,得,

恒成立. ,……

設(shè)直線DA、DB的斜率分別為,,則由得,

,

……

聯(lián)立,得,故存在滿足題意.

綜上,在x軸上存在一點(diǎn),使得x軸平分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從正方體的6個(gè)面的對(duì)角線中,任取2條組成1對(duì),則所成角是60°的有________對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的六個(gè)面的中心可構(gòu)成一個(gè)正八面體,現(xiàn)從正方體內(nèi)部任取一個(gè)點(diǎn),則該點(diǎn)落在這個(gè)正八面體內(nèi)部的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“團(tuán)購”已經(jīng)滲透到我們每個(gè)人的生活,這離不開快遞行業(yè)的發(fā)展,下表是2013-2017年全國快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長速度(y%)的數(shù)據(jù)

1)試計(jì)算2012年的快遞業(yè)務(wù)量;

2)分別將2013年,2014年,…,2017年記成年的序號(hào)t1,23,4,5;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程;

3)根據(jù)(2)問中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

附:回歸直線的斜率和截距地最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)營銷和電子商務(wù)的興起,人們的購物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購物者進(jìn)行采訪,5名男性購物者中有3名傾向于選擇網(wǎng)購,2名傾向于選擇實(shí)體店,5名女性購物者中有2名傾向于選擇網(wǎng)購,3名傾向于選擇實(shí)體店.

1)若從10名購物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;

(2)若從這10名購物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購的男性購物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著現(xiàn)代電子技術(shù)的迅猛發(fā)展,關(guān)于元件和系統(tǒng)可靠性的研究已發(fā)展成為一門新的學(xué)科——可靠性理論.在可靠性理論中,一個(gè)元件正常工作的概率稱為該元件的可靠性.元件組成系統(tǒng),系統(tǒng)正常工作的概率稱為該系統(tǒng)的可靠性.現(xiàn)有,)種電子元件,每種2個(gè),每個(gè)元件的可靠性均為).當(dāng)某元件不能正常工作時(shí),該元件在電路中將形成斷路.現(xiàn)要用這個(gè)元件組成一個(gè)電路系統(tǒng),有如下兩種連接方案可供選擇,當(dāng)且僅當(dāng)從AB的電路為通路狀態(tài)時(shí),系統(tǒng)正常工作.

1)(i)分別寫出按方案①和方案②建立的電路系統(tǒng)的可靠性(用表示);

ii)比較的大小,說明哪種連接方案更穩(wěn)定可靠;

2)設(shè),,已知按方案②建立的電路系統(tǒng)可以正常工作,記此時(shí)系統(tǒng)中損壞的元件個(gè)數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與函數(shù))的圖象相交,將其中三個(gè)相鄰交點(diǎn)從左到右依次記為A,B,C,且滿足有下列結(jié)論:

n的值可能為2

當(dāng),且時(shí),的圖象可能關(guān)于直線對(duì)稱

當(dāng)時(shí),有且僅有一個(gè)實(shí)數(shù)ω,使得上單調(diào)遞增;

不等式恒成立

其中所有正確結(jié)論的編號(hào)為( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),求曲線的公切線方程:

2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《山東省高考改革試點(diǎn)方案》規(guī)定:從2017年秋季高中入學(xué)的新生開始,不分文理科;2020年開始,高考總成績由語數(shù)外3門統(tǒng)考科目和物理、化學(xué)等六門選考科目構(gòu)成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.

某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績基本服從正態(tài)分布N(60,169).

(Ⅰ)求物理原始成績?cè)趨^(qū)間(47,86)的人數(shù);

(Ⅱ)按高考改革方案,若從全省考生中隨機(jī)抽取3人,記X表示這3人中等級(jí)成績?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.

(附:若隨機(jī)變量,則,,

查看答案和解析>>

同步練習(xí)冊(cè)答案