【題目】受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤(rùn)與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時(shí)間x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤(rùn)

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車的利潤(rùn)為X2,分別求X1X2的分布列.

(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.

【答案】(1)(2)X1的分布列為

X1

1

2

3

P

X2的分布列為

X2

1.8

2.9

P

(3)甲品牌轎車

【解析】(1)設(shè)“甲品牌轎車首次出現(xiàn)故障發(fā)生在保修期內(nèi)”為事件A,則P(A)=.

(2)依題意得,X1的分布列為

X1

1

2

3

P

X2的分布列為

X2

1.8

2.9

P

(3)由(2)得E(X1)=1×+2×+3×=2.86(萬元),

E(X2)=1.8×+2.9×=2.79(萬元).

因?yàn)?/span>E(X1)>E(X2),所以應(yīng)生產(chǎn)甲品牌轎車.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,, ,為線段的中點(diǎn),為線段上一動(dòng)點(diǎn)(異于點(diǎn)),為線段上一動(dòng)點(diǎn),且.

(Ⅰ)求證:平面平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省環(huán)保廳對(duì)、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測(cè),測(cè)得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:

優(yōu)(個(gè))

28

良(個(gè))

32

30

已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);

(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)的內(nèi)心,三邊長(zhǎng),點(diǎn)在邊上,且,若直線交直線于點(diǎn),則線段的長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某部門在同一上班高峰時(shí)段對(duì)甲、乙兩座地鐵站各隨機(jī)抽取了50名乘客,統(tǒng)計(jì)其乘車等待時(shí)間(指乘客從進(jìn)站口到乘上車的時(shí)間,乘車等待時(shí)間不超過40分鐘).將統(tǒng)計(jì)數(shù)據(jù)按,,,分組,制成頻率分布直方圖:

1)求的值;

2)記表示事件“在上班高峰時(shí)段某乘客在甲站乘車等待時(shí)間少于20分鐘”,試估計(jì)的概率;

3)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間左端點(diǎn)值來估計(jì),記在上班高峰時(shí)段甲、乙兩站各抽取的50名乘客乘車的平均等待時(shí)間分別為,,求的值,并直接寫出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且

(1)若函數(shù)為減函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】浦東一模之后的“大將” 洗心革面,再也沒進(jìn)過網(wǎng)吧,開始發(fā)奮學(xué)習(xí). 2019年春節(jié)檔非常熱門的電影《流浪地球》引發(fā)了他的思考:假定地球(設(shè)為質(zhì)點(diǎn),地球半徑忽略不計(jì))借助原子發(fā)動(dòng)機(jī)開始流浪的軌道是以木星(看作球體,其半徑約為萬米)的中心為右焦點(diǎn)的橢圓. 已知地球的近木星點(diǎn)(軌道上離木星表面最近的點(diǎn))到木星表面的距離為萬米,遠(yuǎn)木星點(diǎn)(軌道上離木星表面最遠(yuǎn)的點(diǎn))到木星表面的距離為萬米.

(1)求如圖給定的坐標(biāo)系下橢圓的標(biāo)準(zhǔn)方程;

(2)若地球在流浪的過程中,由第一次逆時(shí)針流浪到與軌道中心的距離為萬米時(shí)(其中分別為橢圓的長(zhǎng)半軸、短半軸的長(zhǎng)),由于木星引力,部分原子發(fā)動(dòng)機(jī)突然失去了動(dòng)力,此時(shí)地球向著木星方向開始變軌(如圖所示),假定地球變軌后的軌道為一條直線,稱該直線的斜率為“變軌系數(shù)”. 求“變軌系數(shù)”的取值范圍,使地球與木星不會(huì)發(fā)生碰撞. (精確到小數(shù)點(diǎn)后一位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,均為等邊三角形,,OBC的中點(diǎn).

1)證明:平面平面ABC;

2)在棱上確定一點(diǎn)M,使得二面角的大小為.

查看答案和解析>>

同步練習(xí)冊(cè)答案