【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個不同的零點,求的取值范圍.
【答案】(1)見解析(2)
【解析】
(1)求出函數(shù)的定義域以及導函數(shù),根據(jù)導數(shù)與函數(shù)單調(diào)性的關系,分類討論,,,,可求得的單調(diào)性
(2)由(1)求得在,,,時,函數(shù)的單調(diào)區(qū)間,討論出零點的個數(shù),從而求得實數(shù)的取值范圍。
解析:(1)
①,,,,單調(diào)遞增;,,單調(diào)遞減
②,或,當,,單調(diào)遞減;,,單調(diào)遞增;,,單調(diào)遞減
③,,在單調(diào)遞減
④,或,當,,單調(diào)遞減;
,,單調(diào)遞增;
,,單調(diào)遞減
(2)由(1)得當時,在定義域上只有一個零點
,由(1)可得,要使有兩個零點,則
∴
下證有兩個零點
取,,滿足,故在有且只有一個零點
,滿足,故在有且只有一個零點
當時,由(1)可得,,故在無零點,
又因為在單調(diào)遞減,
∴在至多一個零點,不滿足條件
當時,,故在上無零點,
又因為在單調(diào)遞減,∴在至多一個零點,不滿足條件
∴滿足條件的取值范圍
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)分別寫出直線的普通方程與曲線的直角坐標方程;
(Ⅱ)已知點,直線與曲線相交于,兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學,英語,物理,化學各一節(jié)課.要求語文與化學相鄰,數(shù)學與物理不相鄰,且數(shù)學課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)是奇函數(shù),的定義域為.當時, .(e為自然對數(shù)的底數(shù)).
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)的取值范圍;
(2)如果當x≥1時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,直線(為參數(shù)),以原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程及曲線的直角坐標方程;
(2)設點直角坐標為,直線與曲線交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點, 為的中點,且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點在原點,對稱軸是y軸,直線與拋物線交于不同的兩點、,線段中點的縱坐標為2,且.
(1)求拋物線的標準方程;
(2)設拋物線的焦點為,若直線經(jīng)過焦點,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com