【題目】設(shè)A,B是橢圓C1長軸的兩個端點,若C上存在點M滿足∠AMB120°,則m的取值范圍是______.

【答案】0,1][9,+∞

【解析】

分焦點在軸上兩種情況進行討論,再根據(jù)臨界條件點在橢圓的短軸端點上,進而求解的臨界值,進而求得取值范圍即可.

假設(shè)橢圓的焦點在x軸上,則0m3時,

假設(shè)M位于短軸的端點時,∠AMB取最大值,要使橢圓C上存在點M滿足∠AMB120°,∠AMB≥120°,∠AMO≥60°,tanAMOtan60°,

解得:0m≤1;

當橢圓的焦點在y軸上時,m3,

假設(shè)M位于短軸的端點時,∠AMB取最大值,要使橢圓C上存在點M滿足∠AMB120°,∠AMB≥120°,∠AMO≥60°,tanAMOtan60°,解得:m≥9,

m的取值范圍是(0,1][9,+∞

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內(nèi)該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當在什么范圍內(nèi)時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,的中點,的中點,點在線段上,,.

(Ⅰ)求證:平面;

(Ⅱ)若,求證:平面

(Ⅲ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是首項為1的等差數(shù)列,數(shù)列滿足,且.

(1)求數(shù)列的通項公式;

(2)令,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度(圖),且傾斜時底面的一條棱始終在桌面上(圖、均為容器的縱截面).

1)要使傾斜后容器內(nèi)的溶液不會溢出,角的最大值是多少?

2)現(xiàn)需要倒出不少于的溶液,當時,能實現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在六條棱長分別為2、33、45、5的所有四面體中,最大的體積是多少?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān)決定從某學(xué)校高一年級的650名學(xué)生中隨機抽取男生、女生各25人進行模擬選科經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關(guān),并說明理由.

附:,其中na+b+c+d

PK2k

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.076

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

I)求曲線在點處的切線方程.

(Ⅱ)若直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知的頂點,邊上中線所在直線方程為,邊上的高所在直線方程為,求:

1)頂點的坐標;

2)求外接圓的方程.

查看答案和解析>>

同步練習(xí)冊答案