【題目】已知三棱柱ABC-A′B′C′,底面是邊長為1的正三角形,側(cè)面為全等的矩形且高為8,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行一周后到達A′點的最短路線長.

本題條件不變,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達A′點的最短路線長.

【答案】解:將三棱柱側(cè)面沿側(cè)棱AA′剪開,展成平面圖形如圖,則AA″即為所求的最短路線.

在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″= = .

將兩個相同的題目中的三棱柱的側(cè)面都沿AA′剪開,然后展開并拼接成如圖所示,則AA″即為所求的最短路線.在Rt△AA1A″中,AA1=6,A1A″=8,

所以AA″= = =10.


【解析】考察“最短路線長”一般是求幾何體側(cè)面展開圖像的對角線的距離。根據(jù)已知條件結合勾股定理即可得出。
【考點精析】解答此題的關鍵在于理解棱柱的結構特征的相關知識,掌握兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=(logmx)2+2logmx﹣3(m>0,且m≠1).
(Ⅰ)當m=2時,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線mx+ y﹣1=0在y軸上的截距是﹣1,且它的傾斜角是直線 =0的傾斜角的2倍,則( )
A.m=﹣ ,n=﹣2
B.m= ,n=2
C.m= ,n=﹣2
D.m=﹣ ,n=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,E , F分別為棱ABCC1的中點,則在平面ADD1A1內(nèi)且與平面D1EF平行的直線( )

A.不存在
B.有1條
C.有2條
D.有無數(shù)條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣2x+2(x∈R).
(1)求f(x)的最小值;
(2)求證:x>0時,ex>x2﹣2x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為m與p,且乙投球3次均未命中的概率為 ,甲投球未命中的概率恰是乙投球未命中的概率的2倍.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,長方體的長、寬、高分別為5 cm,4 cm,3 cm.一只螞蟻從A點到C1點沿著表面爬行的最短路程是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式(ax+1)(ex﹣aex)≥0在(0,+∞)上恒成立,則實數(shù)a的取值范圍是(
A.(﹣∞,1]
B.[0,1]
C.
D.[0,e]

查看答案和解析>>

同步練習冊答案