【題目】已知定點,圓,點為圓上動點,線段的垂直平分線交于點,記的軌跡為曲線.
(1)求曲線的方程;
(2)過點與作平行直線和,分別交曲線于點、和點、,求四邊形面積的最大值.
【答案】(1);(2).
【解析】
(1)由中垂線的性質(zhì)得,可得出,符合橢圓的定義,可知曲線是以、為焦點的橢圓,由此可得出曲線的方程;
(2)設(shè)直線的方程為,設(shè)點、,將直線的方程與曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長公式計算出,同理得出,并計算出兩平行直線、的距離,可得出四邊形的面積關(guān)于的表達(dá)式,然后利用雙勾函數(shù)的單調(diào)性可求出四邊形面積的最大值.
(1)由中垂線的性質(zhì)得,,
所以,動點的軌跡是以、為焦點,長軸長為的橢圓,
設(shè)曲線的方程為,則,,
因此,曲線的方程為:;
(2)由題意,可設(shè)的方程為,
聯(lián)立方程得,
設(shè)、,則由根與系數(shù)關(guān)系有,
所以,
同理,與的距離為,
所以,四邊形的面積為,
令,則,得,
由雙勾函數(shù)的單調(diào)性可知,函數(shù)在上為增函數(shù),
所以,函數(shù)在上為減函數(shù),
當(dāng)且僅當(dāng),即時,四邊形的面積取最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年7月,中國良渚古城遺址獲準(zhǔn)列入世界遺產(chǎn)名錄,標(biāo)志著中華五千年文明史得到國際社會認(rèn)可.良渚古城遺址是人類早期城市文明的范例,實證了中華五千年文明史.考古科學(xué)家在測定遺址年齡的過程中利用了“放射性物質(zhì)因衰變而減少”這一規(guī)律.已知樣本中碳14的質(zhì)量N隨時間T(單位:年)的衰變規(guī)律滿足(表示碳14原有的質(zhì)量),則經(jīng)過5730年后,碳14的質(zhì)量變?yōu)樵瓉淼?/span>______;經(jīng)過測定,良渚古城遺址文物樣本中碳14的質(zhì)量是原來的至,據(jù)此推測良渚古城存在的時期距今約在5730年到______年之間.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)同時滿足以下條件:①在上為減函數(shù),上是增函數(shù);②是偶函數(shù);③在處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設(shè),若對,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點.
(1)若為線段上的動點,證明:平面平面;
(2)若為線段,,上的動點(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的偶函數(shù),周期是4,當(dāng)時,.則方程的根的個數(shù)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)為( )
①“為真”是“為真”的充分不必要條件;
②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;
③在區(qū)間上隨機取一個數(shù),則事件“”發(fā)生的概率為
④已知隨機變量服從正態(tài)分布,且,則.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從拋物線上任意一點P向x軸作垂線段,垂足為Q,點M是線段上的一點,且滿足
(1)求點M的軌跡C的方程;
(2)設(shè)直線與軌跡c交于兩點,T為C上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(2)若是直線上一點,是曲線上一點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com