【題目】某研究所計劃利用“神舟十號”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品甲,乙,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品甲(件)

產(chǎn)品乙(件)

研制成本與搭載費用之和(萬元/件)

200

300

計劃最大資金額3000

產(chǎn)品重量(千克/件)

10

5

最大搭載重量110千克

預(yù)計收益(萬元/件)

160

120

試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預(yù)計收益達到最大,最大收益是多少?

【答案】搭載產(chǎn)品甲9件,產(chǎn)品乙4件,可使得總預(yù)計收益最大,為1920萬元.

【解析】

分析:由題意,設(shè)搭載甲產(chǎn)品x件,乙產(chǎn)品y件,總預(yù)計收益為萬元,化為簡單線性規(guī)劃應(yīng)用.

詳解:設(shè)搭載產(chǎn)品甲件,產(chǎn)品乙件,預(yù)計總收益.

,(或?qū)懗?/span>)作出可行域,如圖.

作出直線并平移,由圖象得,當(dāng)直線經(jīng)過點時能取得最大值,,解得.

(萬元).

答:搭載產(chǎn)品甲9件,產(chǎn)品乙4件,可使得總預(yù)計收益最大,為1920萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)對任意 ,都有xln(kx)﹣kx+1≤mx,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,,設(shè)

1)求;

2)判斷數(shù)列是否為等比數(shù)列,并說明理由;

3)求的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機抽取100人的成績進行統(tǒng)計分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分數(shù)大于等于80分認定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?

(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意任取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面四邊形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,則四邊形ABCD面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線

(1)求證:對直線與圓總有兩個不同的交點;

(2)若,的值;

(3)當(dāng)取最小值時,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距500千米,一輛貨車從甲地行駛到乙地,規(guī)定速度不得超過100千米小時.已知貨車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(千米時)的平方成正比,比例系數(shù)為0.01;固定部分為元().

(1)把全程運輸成本(元)表示為速度(千米時)的函數(shù),并指出這個函數(shù)的定義域;

(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知兩條公路的交匯點處有一學(xué)校,現(xiàn)擬在兩條公路之間的區(qū)域內(nèi)建一工廠,在兩公路旁(異于點)處設(shè)兩個銷售點,且滿足,(千米),(千米),設(shè).

(1)試用表示,并寫出的范圍;

(2)當(dāng)為多大時,工廠產(chǎn)生的噪聲對學(xué)校的影響最小(即工廠與學(xué)校的距離最遠).

(注:

查看答案和解析>>

同步練習(xí)冊答案