【題目】某投資公司現(xiàn)提供兩種一年期投資理財(cái)方案,一年后投資盈虧的情況如表:

投資股市

獲利40%

不賠不賺

虧損20%

購(gòu)買(mǎi)基金

獲利20%

不賠不賺

虧損10%

概率P

概率P

p

q

(I)甲、乙兩人在投資顧問(wèn)的建議下分別選擇“投資股市”和“購(gòu)買(mǎi)基金”,若一年后他們中至少有一人盈利的概率大于 ,求p的取值范圍;
(II)某人現(xiàn)有10萬(wàn)元資金,決定在“投資股市”和“購(gòu)買(mǎi)基金”這兩種方案中選出一種,若購(gòu)買(mǎi)基金現(xiàn)階段分析出 ,那么選擇何種方案可使得一年后的投資收益的數(shù)學(xué)期望值較大?

【答案】解:(I)設(shè)事件A為“甲投資股市且盈利”,事件B為“乙購(gòu)買(mǎi)基金且盈利”,事件C為“一年后甲、乙中至少有一人盈利”,則 ,其中A,B相互獨(dú)立 因?yàn)? ,則 ,即 ,
解得
又因?yàn)? 且q≥0,所以 ,故
(II)假設(shè)此人選擇“投資股市”,記ξ為盈利金額(單位萬(wàn)元),則ξ的分布列為:

ξ

4

0

﹣2

P


假設(shè)此人選擇“購(gòu)買(mǎi)基金”,記η為盈利金額(單位萬(wàn)元),則η的分布列為:

η

2

0

﹣1

P


因?yàn)? ,即Eξ>Eη,所以應(yīng)選擇“投資股市”可使得一年后的投資收益的數(shù)學(xué)期望值較大
【解析】(I)設(shè)事件A為“甲投資股市且盈利”,事件B為“乙購(gòu)買(mǎi)基金且盈利”,事件C為“一年后甲、乙中至少有一人盈利”,則 ,其中A,B相互獨(dú)立.利用相互獨(dú)立事件、互斥事件的概率計(jì)算公式即可得出概率.(II)假設(shè)此人選擇“投資股市”,記ξ為盈利金額(單位萬(wàn)元),可得ξ的分布列為.假設(shè)此人選擇“購(gòu)買(mǎi)基金”,記η為盈利金額(單位萬(wàn)元),可得η的分布列,計(jì)算即可比較出大小關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy 中,橢圓G的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率e=
(1)求橢圓G 的標(biāo)準(zhǔn)方程;
(2)已知直線l1:y=kx+m1與橢圓G交于 A,B兩點(diǎn),直線l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點(diǎn),且|AB|=|CD|,如圖所示. ①證明:m1+m2=0;
②求四邊形ABCD 的面積S 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如右表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50


(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5~7分鐘,乙每次解答一道幾何題所用的時(shí)間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望 EX. 附表及公式

P(k2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的恒不為零的函數(shù),對(duì)任意實(shí)數(shù)x,y∈R,都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn的取值范圍是(
A.[ ,2)
B.[ ,2]
C.[ ,1)
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|.
(1)解不等式f(x)>5;
(2)若關(guān)于x的方程 =a的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m、n是兩條不同的直線,α、β是兩個(gè)不同的平面,給出下列命題: ①若α⊥β,m∥α,則m⊥β;
②若m⊥α,n⊥β,且m⊥n,則α⊥β;
③若m⊥β,m∥α,則α⊥β;
④若m∥α,n∥β,且m∥n,則α∥β.
其中正確命題的序號(hào)是(
A.①④
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點(diǎn)的多面體中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.
(Ⅰ)請(qǐng)?jiān)趫D中作出平面α,使得DEα,且BF∥α,并說(shuō)明理由;
(Ⅱ)求直線EF與平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為常數(shù)).

(1)判斷函數(shù)的奇偶性;

(2)若不等式時(shí)有解,求實(shí)數(shù)的取值范圍;

(3)設(shè),是否存在正數(shù),使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),,,都存在以,,為邊長(zhǎng)的三角形?若存在,試求出這樣的的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①存在實(shí)數(shù)α使
②直線 是函數(shù)y=sinx圖象的一條對(duì)稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號(hào)為( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

同步練習(xí)冊(cè)答案